
Centralized Matchmaking for Minimal Agents

K. Bertels
Delft U. of Technology

N. Panchanathan
UpsilonResearch

S. Vassiliadis
Delft U. of Technology

B. Pour Ebrahimi
Delft U. of Technology

Abstract

In this paper we propose a simple though efficient mech-
anism to enable distributed processing among nodes to
communicate with each other and to dynamically rebalance
the workload among them. We discuss a centralized match-
ing mechanism and investigate different matching functions,
varying in the amount of information that is taken into ac-
count. The main contribution of this paper is that the sim-
plest mechanism, called FirstMatch, results in the fastest
matchmaking achieving matching rates of 99%. We also
show that this time efficiency does not have a cost in terms
of efficient task allocation and resource utilization.

Keywords: simulation, minimal agents, task alloca-
tion, market, match making.

1. Introduction and Related Research

If we want computers to solve large and complex prob-
lems, one can either write large and complicated programs
or, as an alternative, use a multi-agent system approach [12].
The basic idea is to have a collection of agents where each
agent has to solve a small subproblem. The agents have to
figure out how to do this and what resources they need.
We are interested in the simplest agent structure or mech-
anism that allows such distributed task processing. We call
such agentsminimal agents. The idea of a minimal agent
is a first step towards using them as basic hardware blocks
for large, distributed systems. Numerous issues are involved
such as routing, synchronization, resource allocation and re-
balancing.

Starting point for building large scale distributed systems
is their ability to process large quantities of data. From a
computer engineering perspective, we are looking for mech-
anisms that can be implemented at a very low, hardware
level. This implies that sophisticated reasoning mechanisms
cannot be considered as they consume too many proces-
sor cycles. What we are actually looking for is a mecha-

throughput

in
te

lli
ge

nc
e

Ideal situation
High intelligence 
Low processing overhead
High Throughput

tradeoff

High intelligence 
High processing overhead
Low Throughput

Low intelligence 
Low processing overhead
High Throughput

linear programming

brute force

DCSP

central matchmaking

Figure 1. Tradeoff between intelligence and
throughput

nism which has the same order of complexity as a multi-
plexor which selects from several inputs what output will
be generated. Such a mechanism should allow to process
large quantities of data at very high speeds. As shown in
Figure 1), there is a trade off between the degree of intel-
ligence of a component and its ability to rapidly process
large amounts of data. Data is viewed here merely as a se-
ries of bytes that need to be treated in some way and the
more bytes that need to be processed in any way (intelligent
or not), the more processor cycle time is required. When tar-
geting large scale distributed systems, ranging from several
thousands to several millions components, it is therefore im-
portant to develop mechanisms that scale up easily and still
provide high performance processing.

As far as resource allocation is concerned, several poli-
cies have been proposed that solve synchronization prob-
lems that can arise during resource allocation and schedul-
ing. Examples of such policies are ”passing the baton” [3],
the shortest job allocation [8] to name but some of the best
known ones. These policies can be applied when two or



(emerging) matchmaker autonomous processing node

Figure 2. Robustness of the system

more processes compete for scarce resources. This arises
when for instance several writes to a database need to oc-
cur or when one process needs to read information from a
database while another is attempting to write to it. Other
situations are competing for processor time, buffers, etc.
Generalized descriptions of these problems are the Din-
ing Philosophers problem, Readers and Writers and Con-
sumers and Producers. They are all different instances of
the same problem where competing processes are looking
for resources.[4]

An alternative approach is to use the Distributed Con-
straint Satisfaction Paradigm (DCSP) which has been pro-
posed as a way to model and reason about the interactions
between agents’ local decisions [16]. In DCSP each agent
controls the value of a variable and agents must coordi-
nate their choice of values so that a global objective func-
tion is satisfied. The global objective function is modelled
as a set of constraints where each agent is only assumed
to have knowledge of the constraints in which its variable
is involved. Determining appropriate values for the deci-
sion variables can be done through either refinement or local
search. The idea of refinement search involves an iterative
reduction in the problem space of each decision variable, re-
sulting in one admissible value. At each refinement step,
constraint propagation techniques are applied. Whenever
refinement turns out to be inapplicable in a later stage of the
search process, backtracking is used to explore other possi-
bilities. This refinement process is guided by either domain
dependent or domain independent heuristics. The major dis-
advantage of this approach is the lack of a global perspec-
tive. An alternative therefore is to introduce local search al-
gorithms. Local search aims to find a value for the variables
given the set of constraints by repeatedly revising the con-
crete value assignment. This revision is typically guided by
what is called a measure of inconsistency. The more global

perspective is obtained by identifying those constraints that
cause an inconsistency. That information is represented by
so called inconsistency measures and is used to generate
the next value assignment. This value assignment can be
done using linear programming [18] or by linking demons
to the tasks that need to be executed [2]. The main disadvan-
tage of these approaches is the computational overhead in-
volved, and therefore their limited scalability, in both com-
puting the inconsistency measures and the subsequent lo-
cal search. For instance, as described in [2], for each pair
of tasks there are two demons recording the number of iter-
ations a constraint was inconsistent. When a recommenda-
tion is to be made,the highest demons’ count is used to pro-
pose a new value for the next search round. It is found that
this particular method may result in qualitative good solu-
tions but the computation overhead is considered too heavy.

The problem we are looking at is similar albeit differ-
ent : we do not have competing processes but rather pro-
cesses that are looking for collaboration to execute some of
the tasks in their local queue nor do we want to find opti-
mal solutions given a set of constraints. The focus of this
paper is rather on low level and simple mechanisms that
can be scalable and result in as little overhead as possi-
ble. More specifically, we focus on resource allocation in
the case where some resources are lying idle and could be
linked with overloaded nodes in a network. The goal is to
re-balance the workload. Such situations may be caused by
local congestion or a node failure, thereby inducing the ne-
cessity to re-allocate tasks to other nodes. Task reallocation
means that the snapshots of the current work load is avail-
able and can be used to perform efficient re-allocation. The
question arises as to how this allocation should be done by
the agents. Whenever an agent needs additional resources to
perform its assigned task, the agent needs to locate the avail-
able resources and make use of it. This assumes some kind
of matchmaking as a precursor to possibly collaboration.
There are basically three approaches to accomplish this.
First, one can use middle agents providing some kind of
central directory [11] [6] [5]. An alternative approach is to
use market bidding mechanisms like in [19] [7][10] where
bids and offers are broadcasted to all agents in the market.
A third possibility is to allow peer-to-peer communications
inducing lower communication cost but using only local in-
formation [13] [17]. In addition, we want the mechanism to
be robust. Whenever for some reason (see 2), some routers
or bridges in the network go down, the same matchmaking
capability needs to be restored as soon as possible for the
different segments in the network. The easiest way to ac-
complish this is to redefine an existing node as the match-
maker. This mechanism would allow any number of net-
work segments and still have some matchmaking capabil-
ity.

This paper extends the work on matchmaking of min-



imal agents with and without a facilitator as described in
[13],[14] and [15]. It investigated matchmaking with and
without a central facilitator and indicates that even when
only local information is available, but using some kind of
auction, the matchmaking achieves a 93% success rate for
populations of up to 32K agents. However, finding a good
match might take up to 300 bidding rounds before actually
finding a match. The main advantage of such approach is the
reduced communication overhead because no broadcasting
to all agents is required. However, the time required to find
a match in the local neighborhood increases substantially.
Another reason to look at centralized mechanisms is that in
many situations of extreme distributed computing, such as
spray computers [9] or dust computing [1], there is still a
need at some point for a centralized mechanism. This can
be for pure routing purposes (e.g. a gateway) or for match
making as discussed in this paper. We assume the follow-
ing about the nodes in the network :

• They are capable of determining whether they require
collaboration with other nodes given the current state
of their queue. This implies some scheduling and plan-
ning knowledge on their behalf in order to determine
for what tasks they require a certain amount of addi-
tional processing power. The question can be raised
whether the nodes can be termed autonomous agents
as the matchmaking does not give any degrees of free-
dom. However, as stated, the autonomy lies in deter-
mining whether or not they need collaboration.

• Once the agent determines to submit a request, that
particular request is handled by the centralized match-
maker. This is similar to the communication channel
manager in the JADE environment where all the com-
munications are centrally channelled.

• There is no need for our processing nodes to hide their
preferences. Each node simply has tasks to process
and may request assistance in that. There is no ben-
efit in lying

The main contributions of this research are :

• The simplest matchmaking function is the most effi-
cient one both in terms of resource usage, task execu-
tion and matching time.

• more computationally expensive functions only yield
a marginal improvement in the order of 1% as far as
the resource usage and task execution are concerned.

• Centralized matchmaking is scalable in the range of
(studied) 5 to 50K agents interacting on the market.1

1 It should be noted that all agent population sizes mentioned in this pa-
per should be multiplied by 2 as it involves pairs consumers and pro-
ducers.

• Multiple matchmakers can be introduced to reduce
substantially the communication overhead. From our
findings we can prudently advance the suggestion that
a population size should preferably not be lower than
10K or larger than 20K. Beyond a size of 10K, perfor-
mance drops considerably and there is no substantial
increase beyond a size of 20K.

The paper is structured as follows. After this section, we
present the match maker model and illustrate how the nodes
exchange information with the match maker and propose 3
different matchmaking functions. We then discuss the sim-
ulation model that was built to assess the efficiency of the
different functions and discuss the underlying assumptions.
We then present the empirical results and conclude by dis-
cussing further research directions.

2. The Central MatchMaker

In this section,we present the implemented model and
justify the choices we made in order to obtain the simplest
possible algorithm.

2.1. Justification

Agent PropertiesIn [14], agents are actively bidding on
an auction. This implies that they react to bids and offers
made by other agents. On the basis of past experiences, the
agents learn to optimize their bidding strategies and requires
a learning algorithm. In the context of minimal agents, we
do not want to include such bidding or learning mechanisms
as it creates too much overhead. In [13], peer to peer lo-
cal interaction was induced by allowing agents to interact
locally with neighboring agents. These interaction patterns
can be changed whenever no match is occurring. This in-
duces quite some overhead and multiple searches before a
good match occurs. Our agent is simpler as its only com-
munication means (as far as matchmaking is concerned) is
directly with the matchmaker.

Bidding Rounds and Messages TransmittedAn im-
portant aspect is the number of messages that need to be
transmitted over the network in order to reach a particular
allocation state. Our approach requires that we need only
a minimum of 2 messages per agent where tasks are re-
quested and resources are allocated. Similar to [14], this
implies that the time complexity of our approach is O(N).
By introducing multiple matchmakers or auctions, this mes-
sage distribution is reduced to O(log(N)). In [17], a related
albeit different problem of agent collaboration is investi-
gated. Agents have to produce an optimal solution given
some global objective. The general distributed constraint
optimization assumes that each agent is sending informa-
tion to all of its linked descendants. Such an approach is
known to have exponential time(O(2N ) and is only feasible



for a very low number of agents. In conclusion, we wanted
to avoid bidding or any other form of message passing other
than submitting a request (bid or offer) to the matchmaker.
This avoids additional message broadcasting that need to be
sent to all other agents informing them of the bid made by
any of the other agents.

Match Making A third aspect of our approach involves
the actual match making process. In [13][15], localized ran-
dom search is used to find a match. In [14], sorting is re-
quired for matchmaking as the highest bid is matched to the
lowest offer, etc. Even though algorithms such as Quicksort
are efficient, they nevertheless represent an additional com-
putational step in the matchmaking process. We avoid the
use of such expensive mechanisms given the large popula-
tion sizes we are interested in.

2.2. The Model

The goal of this experiment is to evaluate differ-
ent ways of redistributing tasks to different processing
nodes, given some constraints. We consider a grid like en-
vironment where some nodes might fall idle whereas others
are still overloaded. The latter category wants to dele-
gate some of the tasks in their local queue to other nodes
in order to decrease the overall computing time. We as-
sume 2 categories of agents, Producers and Consumers.
Producers have processing power to sell and Con-
sumers are looking for additional processing power to
execute the tasks in their queue. The goal is to facili-
tate the match making process in such a way that the
maximum number of tasks is executed, given the avail-
able resources. This implies that a Consumer has to find a
Producer that can provide sufficient processing time to ex-
ecute the task. The matchmaking mechanism involves a
centralized mechanism (similar to but different from a mar-
ket) that will receive from producers the resources offered
and from the consumers the requested resources. No subse-
quent bidding or negotiation is then required. We make the
following assumptions :

• We assume that each agent is directly and with the
same average latency connected to the matchmaker
and that the cost for this connection is the same for
each agent. This simplifies the problem and even al-
lows us to exclude it from the analysis.

• Tasks are atomic by nature and cannot be divided.
Each task has a particular complexity which is rep-
resented by an integer value. This value indicates the
amount of resources required in order to be executed.
Resources are represented in a similar way. Whether
or not a particular task can be executed by an avail-
able resource is then simply determined by comparing
these integer values.

• One consumer can match with only one producer
who has sufficient resources to execute the task. This
means that we currently do not look at collaborative
issues.

• We generate randomly the initial task and resource al-
location from a uniform distribution;

• We are currently using a simulation model in which
the agent requests are treated in a pure sequential way.
In a realistic setting, the match making would occur
in an asynchronous way where the different offers and
bids are treated as they are submitted.

• We assume that there are an equal number of Con-
sumers and Producers. This is not restrictive as the
random generation of tasks and resources can result
in a zero value which is similar to taking the agent out
of the population.

• When referring to ’population’, we mean the number
of agents that use the matchmaker to buy or sell pro-
cessing time. They represent only that fraction of the
actual population that is looking for a match.

• The terms buying and selling may be a bit mislead-
ing as no actual transaction requiring some kind of
payment is involved. This implies the following : con-
sumers and producers do not need to propose a price
and no price formation mechanism, such as a general
equilibrium price, need be computed. Either requests
match and that match is communicated to either party
involved, or there is no match.

In our environment, we haveN agents:A = {a1, . . . , an}.
Some of these agents, called Consumers, have tasks to per-
form Ta = {t1, . . . , tk} for which they are looking for
additional resources and others, called Producers, have re-
sources to sell,Ra = {r1, . . . , rk}. There is a matchmaker
to which both consumers and producers announce their re-
quests. Consumers will send to the matchmaker the num-
ber of tasks they want to delegate and the producer will
announce in the same way how much processing time it
has available. The matchmaker then uses that information
to match consumer requests to producer bids. The basic
matching goes as follows :f : C × P → [0, 1] with

f(ci, pj) =
{

1, if (ci, pj) is a matching pair
0, otherwise.

We define 3 matching functions that vary in complexity
and information used for matching. Evidently, one can de-
fine any number of matching functions taking for instance
the Quality of Service into account or any other relevant fac-
tor. The choice of our functions is justified in the sense that
we want to compare an extremely simple one (FirstMatch)
with functions that are more complicated as they take more
information into account to compute a match. The chosen
functions are defined as follows :



Producers P1 P2 P3 P4 P5
5 2 3 2 1

Consumers C1 C2 C3 C4 C5
1 2 2 1 1

Table 1. FirstMatch Illustration

• FirstMatch : for each consumer request, the match-
maker matches the consumer to the first producer that
has enough resources to execute the consumer’s re-
quest;

• MinDifference : the consumer is matched with that
producer that has enough resources but also that yields
the lowest difference between the requested task and
available resources. This approach attempts to mini-
mize the unused resources. We emphasize that we do
not sort the producers or consumers data;

• MinDistance : the consumer is matched not only
when enough resources are available but tries to mini-
mize the distance between the two paired nodes. This
is to minimize as much as possible the distance that
has to be travelled between the two paired nodes. As
each node has an (x,y)-coordinate, we compute the eu-
clidean distance between two nodes. Similar to Min-
Difference, the producers or consumers are not sorted
using their (x,y)-coordinates.

To illustrate the approach, consider the following exam-
ple, as given in Table 1, for the FirstMatch function. Each of
the 5 producers in our population is given a number of re-
sources and the same is done for the 5 consumers. When
adopting the simplest matching function, Consumer 1 will
be matched to Producer 1, Consumer 2 to Producer 2, Con-
sumer 3 to Producer 3 and Consumers 4 and 5 to Produc-
ers 4 and 5. When adopting the MinDifference matching
function, the pairs are (C1,P5),(C2,P2),(C3,P4),(C4,P3) and
(C5,P5).

3. Empirical Results

For each of the matching functions, we compute the fol-
lowing statistics :

• Task Execution Efficiency : the percentage of tasks
that could be allocated to available resources;

• Resource usage Efficiency :the percentage of
the available resources that are used by the allo-
cated tasks;

• Matching Time : we compute the relative matching
time for a consumer to find an appropriate resource.
In order to account for the varying population sizes,
we divide the matching time by the number of agents

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000 60000

AGENTS

M
S

Figure 3. FirstMatch : Matching Time

in order to find the matching time for one agent. In this
way, we can isolate the influence of the sequential na-
ture of the match making time. We will also look at the
variance of the matching time. It can be considered a
measure of uncertainty where higher variance means
a higher variability in finding a match time. This is an
important issue in later hardware implementation as it
may introduce a number of latencies in the communi-
cation processes.

3.1. FirstMatch experiment

We first look at the FirstMatch function and compute
for a population ranging from 5 to 50.000 agents how
many matches occurred. From Figure 3, we can see that the
matching time is proportional with the number of agents.
However, the increase is very slow as it ranges from 0.4 mil-
liseconds to 1.453 for agent populations up to 20K. When
going beyond this boundary, the matching time increases
more or less proportional. As far as the allocation efficiency
is concerned, we can also observe that for relatively small
populations (less than 5K), we do not get very high allo-
cation rates. The average, given in Table 2, is around 90%.
Even though the allocation never reaches 100%, as the pop-
ulation size increases, we obtain percentages of around 97-
98%. The upper bound is 99% for population sizes larger
than 30K. However, the variance, which could be seen as
a measure of uncertainty, increases also. This can be seen
from Table 2 and from Figure 5). The plot of the first differ-
ence of the matching time (see Figure 5) graphically shows
the increase in variance of the matching time for popula-
tion sizes larger than 20K. As far as the resource utilisation
is concerned, we see that there is a similar evolution as for
the task allocation. It increases with the population size but
then saturates close to 100% for sizes larger than 20K.



Pop.Size FirstMatch MinDifference MinDistance
Tasks Res. Time σ Tasks Res. Time σ Tasks Res. Time σ

5K 90% 98% 0.403 ms 0.3131 91% 97% 0.795 ms 0.2931 85% 98% 1.1818 ms 0.5587
5-10K 94% 99% 0.728 ms 0.0137 94% 98% 2.679 ms 0.3361 90% 98% 3.9100 ms 0.6797
10-15K 97% 99% 1.092 ms 0.0159 95% 98% 4.725 ms 0.4694 92% 99% 6.7801 ms 0.7467
15-20K 97% 99% 1.453 ms 0.0197 96% 98% 7.088 ms 0.7512 93% 99% 9.7213 ms 0.9663
20-25K 98% 99% 1.922 ms 0.0812
25-30K 98% 99% 2.678 ms 0.3262
30-35K 99% 99% 4.241 ms 0.6853
35-40K 99% 99% 6.374 ms 0.6248
40-45K 99% 99% 8.875 ms 0.9153
45-50K 99% 99% 11.427 ms 0.7063

Table 2. Average Matching time and Task Allocation for varying Population Sizes

0.8

0.85

0.9

0.95

1

1.05

1.1

-1 9999 19999 29999 39999 49999 59999

AGENTS

%

%Resources used
%tasks allocated

Figure 4. FirstMatch : Task Allocation and
Used Resources

3.2. MinDifference experiment

As can be seen from Figure 6, the first thing to notice
about this matching function is the substantial difference
in time required to produce a match. This is evidently ex-
plained by the fact that, for each consumer, the function it-
erates over all producers and picks the one that generates
the smallest unused resources. The matching time is pro-
portional to the population size and evolves in a relatively
stable way as can be seen from the graph of the first differ-
ence even though there are population sizes where a higher
variance is observed. As far as the task allocation efficiency
is concerned and on the basis of Figure 7 and Table 2, we
can make a similar observation as for FirstMatch. For pop-
ulations smaller than 5K, the matching is not very efficient
with allocation percentages ranging around 90%. This allo-
cation percentage rises to reach 96% for a 20K population

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10000 20000 30000 40000 50000

AGENTS

F
IR

S
T

D
IF

F

Figure 5. FirstMatch : First difference of
Matching Time

size. Increasing the population from 15K to 20K, only in-
creases the efficiency by 1% but requiring 50% more time
to produce the match. Because of the very low improve-
ment for either task or resources, we do not simulate be-
yond the 20K boundary. Shown in the same figure, we also
plotted its first difference. From that graph and also from
Table 2, we can again observe that as the population size in-
creases, the variance of the matching time goes up, intro-
ducing more uncertainty in the matching process. As far as
the resource usage is concerned, and also shown in Figure 7,
the same conclusion as for FirstMatch holds : it improves as
population size increases and then saturates at 99%.

3.3. MinDistance experiment

The last matching function that was used is the mini-
mal distance between two agents. The minimum distance



-2

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

AGENTS

M
S MinDiff

MinDistance

Figure 6. MinDifference : Matching Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 5000 10000 15000 20000 25000

AGENTS

%
 F

IR
S

T
 D

IF
F

%resources used
%tasks completed

Figure 7. MinDifference : Task Allocation,
Used Resources and first difference of
Matching Time

function computes the euclidian distance between each con-
sumer and a given set of producers which is more expensive
in terms of computing cycles than MinDifference and First-
match. We can clearly observe from figure 6 that the match-
ing time of MinDifference is less than MinDistance. This
is a direct consequence of the structure of the MinDistance
function. Looking at the MinDistance efficiency plotted in
Figure 8, a similar observation as for the other 2 functions
can be made : the task execution efficiency does not increase
substantially as we approach the 20k boundary. The first dif-
ference plot shows as similar behavior as the MinDifference
and the variance has a similar value. However,as can be seen
from Table 2, MinDistance systematically has a higher vari-
ance than MinDifference. As far as the resource utilisation

-1

-0.5

0

0.5

1

1.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

AGENTS

%
 F

IR
S

T
 D

IF
F

%resources used
%tasks completed
First Difference

Figure 8. MinDistance : Task Allocation, Used
Resources and first difference of Matching
Time

is concerned, the same observations as above hold.
Putting the results together and comparing the task al-

location efficiency for the 3 functions, as plotted in Fig-
ure 9, we can observe that MinDifference is the most ef-
ficient approach.2 However, it is only marginally better than
FirstMatch. As we can see, these differences center around
0 indicating that they are equally efficient. Combined with
the fact that FirstMatch has much lower matching times, we
can conclude that the simplest function is the most power-
ful one.

4. Size does matter

One possible extension which was mentioned before is
to introduce multiple matchmakers. This would allow us to
bring down the number of messages to O(log N). The ques-
tion arises then how many of such matchmakers we need
for a given population size. An answer to this question can
be found in Figure 4.3 We see that the matching efficiency
rapidly goes up as the population size increases. This im-
plies that for low population sizes i.e less than 6000 we
do not obtain very high allocation rates(less than 80%). As
the population size increases up to 20000 it reaches 98%.
We then see that for larger population sizes there is no sub-
stantial increase in allocation efficiency. It remains constant
for values larger than 30000. As mentioned before, the al-

2 As it is difficult to distinguish between the allocation curves of the
three functions, we plotted only the FirstMatch task allocation effi-
ciency and computed then the difference between their analogs for the
two other functions.

3 As the FirstMatch algorithm has the best performance, we restrict our
discussion to it.



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5000 10000 15000 20000 25000

AGENTS

M
S

Firstmatch
MinDiff
MinDistance

Figure 9. Task Allocation Efficiency for the 3
functions

location never reaches 100% and we did not simulate be-
yond the 50000 boundary because no appreciable changes
are observed. In conclusion, population sizes of 15K to 20K
paired agents guarantees sufficiently high matching rates.
Going below the 10K boundary will generate lower match-
ing rates and the going beyond the 20K boundary will in-
crease the matching time but not the allocation efficiency.

5. Conclusion and Further Research

We have studied the resource allocation and match mak-
ing in single clusters systems by giving a simple approach
for matchmaking. We introduced a centralized matching
mechanism that requires very little information to produce
a good matching. In addition, the number of messages re-
quired to be broadcasted over the network is limited and in
the order of O(N). When introducing multiple matchmak-
ers, this can even be reduced to O(log N). We furthermore
evaluated more complicated matching functions, as they in-
corporated more information for the actual matchmaking,
by looking at task allocation efficiency, resource usage effi-
ciency and matching time. The main findings are (i) First-
Match is the simplest and the most efficient among all the
three, (ii) the MinDifference function is better than MinDis-
tance as far as the matching time is concerned taking into
consideration resource allocation and finally, (iii) the cen-
tralized matching mechanism easily scales up to 20K. For
FirstMatch this even goes to 50K. (iv) It seems that there ex-
ists some kind of population size beyond or below which ei-
ther no improvement can be generated or the matching ef-
ficiency goes down respectively. This allows the introduc-
tion of multiple matchmakers, reducing the number of mes-
sages to O(log N).

Issues which remain unsolved are how efficient this ap-
proach is when resources and tasks are unevenly distributed.
It might be that more information intensive approaches
will outperform the FirstMatch approach. It also remains
to be seen if this approach remains feasible when introduc-
ing asynchronous, rather than batch-like, sequential, match-
making.

References

[1] K. Gabriel A. Berlin. Distributed mems: new challenges for
computation.IEEE Computing in Science and Engineering,
4(1):12–16, Jan-March 1997.

[2] S. Smith A. Nareyek and C. Ohler. Integrating local-search
advice into refinement search (or not). InProceedings of
the CP 2003 Third International Workshop on Cooperative
Solvers in Constraint Programming, pages 29–43, 2003.

[3] G. Andrews. A method for solving synchronization prob-
lems. Science of Computer Programming, 13(4):1–21, Dec.
1989.

[4] G. Andrews. Foundations of Multithreaded, Parallel and
Distributed Programming. Addison-Wesley, Reading Mas-
sachusetts, 2000.

[5] Epema D. Bucher A. Local versus global queues with pro-
cessor co-allocation in multicluster systems. InEighth Work-
shop on Job Scheduling Strategies for Parallel Processing (in
conjunction with HPDC-11), pages 184–204. 2002.

[6] Karonis N. Kesselman C Martin S. Smith W. Tuecke S. Cza-
jkowski K., Foster I. A resource management architecture
for metacomputing systems. InThe 4th workshop on Job
Scheduling Strategies for Parallel Processing, pages 62–82.
1998.

[7] Ch. Weinhardt D. Veit, J.P. Muller. Multidimensional match-
making for electronic markets.Journal of Applied Artificial
Intelligence, 16(9-10):853–869, 2002.

[8] E. Dijkstra. A tutorial on the split binary semaphore. In
EWD 703, pages 1–10. Technische Universiteit Eindhoven,
1979.

[9] M. Mamei R. Tolksdorf F. Zambonelli, M.P. Gleizes. Spray
computers: Frontiers of self-organization. In1st Interna-
tional Conference on Autonomic Computing, page poster,
2004.

[10] Klusch M. Widoff S. K. Sycara, Lu J. Matchmaking among
heterogeneous agents on the internet. InProceedings. AAAI
Spring Symposium on Intelligent Agents in Cyberspace.
1999.

[11] Harada L. Kuokka, D. Matchmaking for information agents.
In Proceedings of the 14th International Joint Conference on
Artificial Intelligence, pages 672–678, 1995.

[12] Jennings N. On agent-based software engineering.Artificial
Intelligence, 117:277–296, 2000.

[13] E. Ogston and S. Vassiliadis. Matchmaking among mini-
mal agents without a facilitator. InProceedings. 5th Interna-
tional Conference on Autonomous Agents, pages 608–615.
May 2001.



[14] E. Ogston and S. Vassiliadis. A peer-to-peer agent auc-
tion. In Proceedings of the first international joint confer-
ence on Autonomous agents and multiagent systems Part I,
pages 151–159, July 2002.

[15] E. Ogston and S. Vassiliadis. Unstructured agent match-
making: experiments in timing and fuzzy matching. InPro-
ceedings of the 2002 ACM symposium on applied comput-
ing, pages 300–306, March 2002.

[16] M. Tambe M.Yokoo P.Modi, W. Shen. An asynchronous
complete method for distributed constraint optimization. In
Proc. International Conference on Autonomous Agents.

[17] Milind Tambe Makoto Yokoo Pragnesh Jay Modi, Wei-
Min Shen. Asynchronous complete method for general dis-
tributed constraint optimization. InProceedings of the first
international joint conference on Autonomous agents and
multiagent systems Part I, July 2002.

[18] M. Sakkout H., Wallace. Probe backtrack search for minimal
perturbation in dynamic scheduling.Constraints, 5(4):359–
388, 2000.

[19] Jennings N.R. Vulkan, N. Efficient mechanisms for the sup-
ply of services in multi-agent environments.Journal of De-
cision Support Systems, 28(1-2):5–19, 2000.


