
1

Matchmaking within Multi-Agent Systems

B. Pour Ebrahimi K. Bertels S. Vassiliadis K. Sigdel
Computer Engineering Laboratory, ITS, TU Delft, The Netherlands

{behnaz, koen, stamatis ,kamana}@ce.et.tudelft.nl

Abstract— A distributed system is one in which compo-
nents located at networked computers communicate and co-
ordinate their actions only by passing messages. The re-
search areas of multi-agent systems and distributed systems
coincide, and form the research area of distributed agent
computing. The study of multi-agent systems (MAS) focuses
on systems in which many intelligent agents interact with
each other. In many situations, agents have to locate re-
sources involving some kind of matchmaking. In this paper,
we will give an overview of different approaches of match-
making processes. We are interested in large-scale networks
where certain nodes, called consumers, have to locate avail-
able resources and other nodes, called producers, are look-
ing for tasks to execute. For matchmaking to occur, some
issues must be considered, such as how to enable agents to
decompose their tasks and goals, how to enable agents to
communicate and how to enable agents to represent and rea-
son about the actions, plans, and knowledge of other agents
in order to interact with them. Criteria such as the maxi-
mum number of matched tasks and resources, task alloca-
tion efficiency, resource usage efficiency and matching time
must be considered. The choice of the matchmaking archi-
tecture will evidently impact important aspects such as task
allocation, load balancing and routing as well as interaction
between agents. In this paper we provide an overview of
existing approaches such as centralized matchmaking and
peer-to-peer communications and propose a framework that
compares the different approaches in terms of performance,
efficiency, communication cost and task complexity.

Keywords: Match-making, resource allocation, peer-to-
peer, centralized matchmaking.

I. INTRODUCTION

Computation in networks of processing nodes, each
holding a part of the inputs and/or resources initially, can
roughly be classified into centralized, duplicated and dis-
tributed computations. A centralized solution relies on one
node being designated as the computer node and process-
ing the resources to process the entire application locally.
All input data and relevant resources are sent to this node,
and after local processing the computer sends the relevant
output data to each of the other nodes. A duplication so-
lution sends all input data to each node, after which each
node processes the entire application and throws away all
output data except those it needs itself. Duplicated com-
putation is used to compute routing tables in the internet.
In distributed computation, the processing steps of the ap-
plication are divided among the participating nodes. The

goal is to minimize communication and computation cost.
The distributed model is characterized by a collection of
autonomous processing elements, called nodes. In addi-
tion to some computing and storage resources, each node
has the possibility to exchange information with some of
the other nodes. These are referred to as its neighbors and
the communication place through a link.

The study of multi-agent systems (MAS) focuses on
systems in which many intelligent agents interact with
each other. The agents are considered to be autonomous
entities, such as software programs or robots. The agents
can share a common goal or they can pursue their own in-
terests. Multi-agent systems are often distributed systems,
and distributed systems are platforms to support multi-
agent systems. The basic idea in multiagent system ap-
proach is to have a collection of agents that have to solve a
small subproblem. Agents may be affected by other agents
(including humans) in pursuing their goals and executing
their tasks. Interaction can take place indirectly through
the environment in which they are embedded or directly
through a shared language. Whenever an agent needs ad-
ditional resources to perform its assigned task, the agent
needs to locate the available resources and make use of it.
This assumes some kind of matchmaking as a precursor to
possibly collaboration [25].

In this paper first we review the issues that are impor-
tant in distributed systems like resource allocation, load
balancing, routing and synchronization and we survey dif-
ferent approaches of their implementation. Then we dis-
cuss matchmaking process and different mechanisms of
matchmaking. In next section we present a comparison of
matchmaking mechanisms. At last we will have the sum-
mary and discuss future research directions.

II. ISSUES OF DISTRIBUTED SYSTEMS

A distributed system can be viewed as a collection of
computing and communication resources shared by active
users. In distributed and dynamic domains, control is dis-
tributed and the multiple agents must collaborate to ac-
complish the tasks at hand. To achieve a maximum effi-
ciency of large distributed computing systems, the work-
load has to be distributed equally throughout the network.
Delivering messages and also synchronization are other as-
pects to be considered in distributed systems. In following
we investigate some approaches to perform these issues.



2

A. Resource Allocation

The sharing of resources is a main motivation for con-
structing distributed systems. Good resource allocation de-
cision in a dynamic and unpredictable environment must
consider overall system optimization across tasks, and
the sustainability of the agent society for the future tasks
and usage of the resources. In agent coalition formation
method [4], agents can form a coalition and execute a task
together. In this scheme each agent bids the maximum af-
fordable cost for each task. Based on the bidding informa-
tion and the cost curves of the tasks, the agents are splitted
into groups, one for each task, and cost division among the
group members for each task is calculated. It is always
efficient to include an agent in a coalition if the agent can
afford the marginal cost. The objectives of this method in-
clude: to optimize the total performance of the tasks and to
divide the cost among agents in a fair way to achieve good
sustainability.

In distributed systems the multiple agents each obtain
only local information and face global ambiguity - an agent
may know the results of its local operations but it may not
know which other collaborators must be involved to fulfill
the global task and which operations these collaborators
must perform for success. Also the situation is dynamic
so that a solution to the resource allocation problem at one
time may become obsolete when the underlying tasks have
changed. This means that once a solution is obtained, the
agents must continuously monitor it for changes and must
have a way to express such changes in the problem. Modi
[10] proposed a formalization of distributed resource al-
location that represents both dynamic and distributed as-
pects of the problem and a general solution strategy that
uses distributed constraint satisfaction techniques.

Microeconomic mechanism can also be considered as
resource allocation mechanisms in distributed systems be-
cause the economic activities of human beings can be
viewed as a form of large-scale resource allocation without
centralized control. As distributed systems grow in size
and the nodes become more powerful and complex, the
complexity of making resource allocation decisions grows
dramatically. Microeconomic approaches limit this com-
plexity by partitioning the complex global problem of allo-
cating many resources, supplied by many sources and used
by many types of consumers into a set of simple, indepen-
dent sub-problems. There are two main ways to allocate
resources among the competing agents. One of them is the
exchange based economy and the other is the price based
economy. In the exchange based economy, each agent
is initially endowed with some amounts of the resources.
They exchange resources till the marginal rate of substitu-
tion of the resources is the same for all the agents. Kurose,

in his paper [15] , provided decentralized algorithms to al-
locate resources (such as files or file fragments) in a coop-
erative and non-competitive manner among agents (com-
puter system). The optimization criteria included com-
munication cost and average processing delay. Unlike the
selfish model where each user had its own utility function,
this model has a global utility function which is known to
all the users in the distributed system.

In a price based system, the resources are priced based
on the demand, supply, and the wealth in the economic
system. The allocations are done based on reaching an
equilibrium price where demand equals the supply. Bid-
ding and auctioning is another form of resource alloca-
tion based on prices. There are several auctioning mech-
anisms such as the Sealed Bid Auction, Dutch Auction,
and English Auction.The basic philosophy behind auctions
and biddings is that the highest bidder always gets the re-
sources, and the current price for a resource is determined
by the bid prices [8].

Natural models have also used by researchers to design
multiagent systems to solve different kinds of resource
allocation or optimization problems. A common natural
model used is that of ant behaviors [2]. Although each
ant undertakes very simple activities, the global outcome
of the collection accomplishes goals that are very difficult
without the ants behaving as a team. Ant behaviors are an
example of what is known as Complex Adaptive Systems
(CAS). These systems have a large number of members
with simple functions and limited communication among
them. Camorlinga [23] proposed an approach that uses the
CAS framework to develop multiagent systems for storage
resource allocation based on squirrels’ hoarding behaviors
in peer-to-peer systems. From a computational perspec-
tive, squirrels are allocating resources to storage demands
in such a way that resources are balanced.

B. Load Balancing

When the demand for computing power increases the
load balancing problem becomes important. We can state
the load balancing problem as follows. Given the initial
job arrival rates at each computer in the system find an al-
location of jobs among the computers so that the response
time of the entire system over all jobs is minimized.

In general we can distinguish static and dynamic load
balancing algorithms. In the case of a static load balanc-
ing policy, a fixed process graph which represents the dis-
tributed computation mapped onto the interconnection net-
work. In this case the aim is to minimize edge dilation,
processor load differences and edge congestion. If the load
situation changes in an unpredictable way, as it is the case
for many applications, it is necessary to use a dynamic load



3

balancing strategy which is adaptive to this changing load
situation. To be efficient for large distributed systems the
load balancing algorithm itself should be distributed. Any
dynamic distributed load balancing strategy can be sepa-
rated into a decision part and a migration part. In the deci-
sion part of the algorithm a decision to migrate or to keep a
load unit is made. This decision can be based on the local
load situation and that of the neighboring processes or it
depends on the load situation of any subset of the whole
network. In the first case it is called a ’local decision base’
whereas the second case is called ’global decision base’
[16].

The load balancing problem is to design algorithms that
minimizes the mean job waiting time by migrating the jobs
to balance the workloads of the processor nodes. This
can also be done using the bidding and auctioning mech-
anisms, and price controls. In the load balancing econ-
omy, jobs migrate in search of suppliers based on the job
preference model. Each job independently computes the
best place (node) to be served based on its preferences
and wealth, and the resources prices. Ferguson[7] pro-
posed a microeconomic algorithm for load balancing in
distributed computer systems. In this approach the system
is partitioned into sets of completely independent agents
that compete for the resources in the system. Through the
laws of supply and demand,this competition dynamically
sets prices that are charged for purchasing the available re-
sources. A globally effective allocation of the resources
is achieved indirectly through the selfish optimization and
competitive behavior of the economic agents. In this ap-
proach a job attempts to purchase resources and be ser-
viced. To do so, it computes a budget set and a preference
relation on elements of the budget set based on price and
service time and then generate a bid for the most preferred
budget set element. A job is allowed to migrate through
the system in search of CPU service, but it must pay each
time it crosses a link. Job must return to the processor at
which it entered the system after receiving CPU service.

C. Routing

Delivering messages between pairs of processors is a ba-
sic and primary activity of any distributed communication
network. This task is performed using a routing scheme,
which is a mechanism working in a distributed fashion for
routing messages in the network. The routing mechanism
can be invoked at any source node and be required to de-
liver a message to some destination node. A routing algo-
rithm is a (computable) function that for each message ar-
riving at a node determines the link on which the message
has to be transmitted, and this is as function of its desti-
nation or any other information contained in the header of

the message. The term efficient groups a set of desirable
quality factors like: the routes generated by the algorithm
are (near) shortest paths in the graph; the time to compute
the function is low; the number of routes using a same link
is low; the size of the data structure required by the algo-
rithm is small; the routing scheme is fault tolerant, and so
on[9].

D. Synchronization

One of the issues must be considered along with task
allocation is synchronization problem. In distributed sys-
tems synchronization can be performed in centralized and
distributed mechanisms. In MAS, centralized synchro-
nization does not fit with autonomy of agents and scala-
bility. Besides, centralized control conflicts with the dis-
tributed nature of MAS. Distributed synchronization can
be implemented as regional synchronization[6] that en-
ables agents to synchronize with only colleagues inside
their perceptual range. With this model agents form syn-
chronized groups on the basic of their actual locality. Dif-
ferent groups act asynchronously, while agents act syn-
chronously in their group. With regional synchronization,
each agent is responsible to setup synchronization with
other agents. Synchronization between two agents then
comes down to reach a mutual agreement about synchro-
nization. To reach such an agreement agents negotiate with
one another by means of exchanging messages.

III. MATCHMAKING APPROACHES

In the field of matchmaking, many approaches have
been proposed. We can classify them in 3 different cat-
egories:
• First is to use an market bidding mechanisms [24]
[5][13]. In the last few years, there has been increase in
research that combines the disciplines of multi-agent sys-
tems and economics. When the agents need to decide on
task assignments, then a decision should be made on which
agent will carry out a given task. Most of these questions
can be resolved by providing the agents with a monetary
system, modeling them as buyers and sellers of tasks and
resources. Each buyer and seller will set a price and quan-
tity of how much it is willing to buy or sell. The market
mechanism then computes the equilibrium price at which
supply and demand converge and the market clears. An
alternative but related mechanism is the auction. The most
common auction protocols are one-to-many and many-to-
many auctions. In one-to-many auctions one agent initi-
ates an auction and a number of other agents can make
a bid . The English auction, Dutch auction, first-price
sealed-bid auction, second-price sealed-bid belong to this
category. The basic philosophy behind these auctions is



4

that the highest bidder always gets the resource, and the
current price for a resource is determined by the bid prices.
In many-to-many auction, several agents initiate an auction
and several other agents can bid in the auction. The dou-
ble auction is the most known auction protocol for many-
to-many auctions. In these auctions, buyers and sellers
are treated symmetrically with buyers submitting bids and
sellers submitting offers.
• The second common form of matchmaking within multi-
agent systems is through a broker or middleagent [14] [12]
[3]. One of the major problems facing multi-agent systems
is finding the services and information that the agent needs
and connecting to the agent that is providing this service.
There are two types of information used in the agent inter-
action process: preferences and capabilities. To protect the
privacy of each agent, preferences flow from a requester to
a provider agent, and capability information flows from the
provider to the requester. Agents that deal with both types
of information that are neither requesters nor providers are
middle-agents. There are many different forms of such
agents, differing in whether consumer or provider infor-
mation is stored and if the facilitator directly connects con-
sumers and providers or acts as an intermediary for trans-
actions, but they all act as a directory for available services
in the system. The three most commonly used types are :
blackboards, brokers and matchmakers. In these systems
there are three general agent categories: service providers,
service requesters, and middle agents. Matchmaking is the
process of finding an appropriate provider for a requester
through a middle agent. Provider agents advertise their
capabilities via middle agents who store these advertise-
ments. The requester asks the middle agent whether it
knows of a provider with the desired capabilities. The mid-
dle agent matches the request against the advertisements
and returns the result[see fig.1].
• The third approach is to allow peer-to-peer commu-
nications inducing lower communication cost but using
only local information [20] [17]. In local matchmaking
providers and consumers are distributed randomly around
the system and consumers look only for an acceptable
match within their neighborhood not necessarily yielding
the best possible match. In the studies on peer-to-peer
communication mechanisms, in [20] and [19], agents are
considered connected by a random peer-to-peer communi-
cation networks which search partners for tasks by form-
ing small groups that locally modify their network connec-
tions. In [20] as agents find compatible neighbors, clusters
form and (in a successful system) gradually get larger. A
successful trail of the system is one that ends up with most
of the agents connected to each other, usually in a single
large cluster. So in this model cluster size is not limited

Fig. 1. Matchmaking using matchmaker

and thus the design goal of avoiding centralized control is
not fully met. In [19] by limiting cluster size distribution
in the system as a whole is maintained. In [21] a modified
version of the centralized auction and the agent bidding up-
date algorithm presented in [22] is used. In this approach,
an auction is made up of agents representing individual
traders each with a single good to buy or sell, and a fixed
reservation price. In the paper has been shown that for
the peer-to-peer auction the message round cost remains
constant as the number of agents increases while for the
centralized case it increases linearly. But the cost of num-
ber of bidding rounds to find equilibrium in peer-to-peer
auction is about two times higher than centralized auction.
In the remains of this paper, we consider market based
matching and middle layer matching similar to each other
even though the algorithms underlying both approaches
may differ.

IV. COMPARISON OF MATCHMAKING MECHANISMS

On the continuum from centralized to peer-to-peer
matchmaking, in peer-to-peer mechanisms, the agents are
grouped into clusters which are controlled centrally[see
fig.2]. Clusters could grow as large including all the agents
in the system and a cluster controller would then become
a global central controller. To avoid the use of a central
controller, the clusters must be decentralized or cluster size
must be limited. Decentralizing the clusters is not feasible,
however, combining or splitting up clusters without some
global cluster information is difficult and put decentralize
clusters completely to fail. Another approach to maintain-
ing locality is to keep clusters centralized, but to limit the
size of the clusters. Given the variety of approaches for
matchmaking, it is important to be able to determine the
conditions under which particular mechanisms are more
performant than others. A set of criteria that can be used
to assess the usefulness of a particular mechanism can be:
• Scalability: in large distributed systems, this issue is
very important. Scalability requires that an increase in the
number of new agents and resources has no noticeable ef-
fect on performance nor on administrative tasks.
• Dynamic and flexible behavior: multi agent systems
need to manage problems such as increases and fluctua-
tions of the number of agents, changes of task profiles and



5

Fig. 2. Matchmaking using peer-to-peer communication

drop-outs of agents. They should be able to determine the
most appropriate organizational structure by themselves
at run-time (self-building) and to change this structure as
their environment changes (adaptivity).
• Throughput: an important element is the through-
put, especially when considering very large scale systems.
Throughput is measured as the amount of useful work car-
ried out by the system in a unit time. In MAS throughput
is defined as the number of tasks that can be allocated to
available resources in a period of time.
• Robustness: is the ability of the system to remain oper-
ational even when minor or major disrupting events occur.
This is a vital characteristic of a distributed environment
and the matching mechanism should therefore also have
this property.
• Communication cost: The number of messages that
must be processed and passed to find matches is another
criterion that could be taken into account. This cost affects
on matching time and communication overhead.

In the next section, we compare two main matchmak-
ing mechanisms, centralized and localized, based on these
criteria, as given in Table I.

A. Centralized Matchmaking

All facilitator architectures involve offered services or
requests being stored in a central location. Agents wishing
to find matches then submit a request to this location. Fa-
cilitator architectures are good for finding optimal matches
since the facilitator is in a position to compare all available
possibilities.
• Scalability: A centralized controller limits the scaling
capability of the system. As the system grows, a central
controller that stores data on all agents will need more and
more memory. It will also need an increasing amount of
processing time to search for matches among its stored ad-
vertisements and it will need more and more bandwidth
to handle requests from the agents. Centralized match-
makings are very efficient in certain population sizes. Go-
ing below this boundary will generate lower matching rate
and going beyond the boundary will increase the matching
time but not the allocation efficiency[1].
• Dynamic and flexible behavior:In centralized match-
making (using one facilitator), middle agents must pro-
vide a directory of the entire system. For large and dy-

namic system such a directory can be expensive to main-
tain, and if there are many requests for matches the middle
agents can become a bottleneck since all matches are made
through requests to the facilitator. Facilitators which pro-
vide complete directories of the consumers or providers in
a system, can consume a large amount of memory and all
advertisements and requests must be made in a way the
facilitator can understand. Such requirements would be a
form of global knowledge that would make it more difficult
to add new agents which must be initialized somehow[20].
• Throughput: the centralized matchmaking guarantees
that an agent finds a match if it exists or allows an agent to
find the best match system wide. But as the system grows,
the matching time (the time is needed for a consumer to
find a appropriate resource), will increase.
• Robustness: one central middle-agent represents a sin-
gle point of failure and communication bottleneck in the
system. If the system loses the middle-agent, it is not pos-
sible to search for matches. Robustness can be designed
into the system by alllowing other nodes to assume the
matchmaking function whenever required. Mullender and
Vitanyi [18] present a general model of a distributed di-
rectory service and its memory and messages costs, and
Jha et al [11] discuss splitting a single facilitator’s func-
tion among a number of agents.
• Communication cost: Depending on which centralized
mechanism is used, communication cost may differ. Cen-
tralized matchmaking based on one matchmaker, requires
only 2 messages per agent where tasks are requested and
resources are allocated. Considering a system with N
agents if we compute the number of messages that must
be processed and passed in each trail, this cost will be
c = 2N . In centralized auction, each round auctioneer
must send a message to each trader and then receive a mes-
sage from them, but reaching an equilibrium price takes
several rounds. So for this case the former cost must be
multiplied by the number of rounds. For example consider
a system with 50k agents, this cost will be 100k for a sys-
tem with central matchmaker. For centralized auction case
that takes about 50 rounds, the cost of message passing
will be 5000k. As we can observe this cost increases lin-
early as the system grows. In large scale systems multiple
matchmakers can be introduced to reduce substantially the
communication overhead.

B. Localized Matchmaking

In local matchmaking agents can only interact within a
local neighborhood, that is a small subset of other agents
whose addresses are known to that agent. Any particular
consumer can find the provider he is looking for within a
local area.
• Scalability: In this method, agents search locally for



6

centralized Localized
Scalability scalable in a particular range of population size scalable in case of interaction between clusters
Flexibility flexible in case of using multiple matchmakers flexible
Robustness robust in case of using multiple matchmakers robust
Throughput efficient in low scale systems efficient due to potential concurrency and

higher matching rate if there is interaction between clusters
lower matching rate

Communication cost less communication cost in low scale systems less communication cost in large scale systems
for large scale systems can become a bottleneck

TABLE I
COMPARISON OF MATCHMAKING MECHANISMS

matches and the size of an agent’s neighborhood is based
upon the resources of the agent, so as the number of agents
in the system grows, the size of the neighborhood of any
agent in the system remains constant. Even though such
an approach guarantees scalability , it is not certain that it
will result in a more efficient matchmaking. This restric-
tion creates a more scalable agent system.[19]. As research
[1] shows that the matching rate is largly influenced by the
size of the population in which the matching must occur.
So if there is no task migration between the clusters, in-
creasing the number of agents will increase the number of
clusters but will not improve matching efficiency.
• Dynamic and flexible behavior: Matchmaking without
a facilitator using peer-to-peer communication minimize
the set up cost for the system and the memory, process-
ing, and communication resource requirements of individ-
ual agents. This method allows to check a large number
of possible matches in parallel. By avoiding a central fa-
cilitator that must understand advertisements for services,
the need for a single common system wide capability is re-
duced[20]. In a dynamic system where tasks end and clus-
ters change, system decay client-server matches because
of an eventual client server distribution. To overcome this
problem, matchmaking can continue indefinitely organiz-
ing into new sets of clusters, as long as some agents are
willing to be flexible and abandon tasks they can not find
matches for[19].
• Throughput: In this approach agents search among a
local set of neighbor agents for matches, and form cluster
partnership to expand their search space. Such a system
either quickly form a single large cluster where almost all
links are matched, or remained almost completely uncon-
nected. This behavior varies with the number of task cat-
egories[20]. localized matchmaking reduces communica-
tion overhead but the time required to find a match in the
local neighborhood increases substantially.
• Robustness: Peer-to-peer mechanisms don’t use one
central middle-agent, so they avoid single point of failures.

• Communication cost: If we compute the number of
messages that must be processed and passed in each trail in
peer-to-peer agent auction[21], considering a system with
N agents and s clusters and g agents per cluster, the max-
imum message round cost calculated for a bidding round
is c = 5s/2 + 3g − 1. For example in a system with
50k agents, reaching to equilibrium price takes about 100
rounds in peer-to-peer, so the cost of message passing will
be 5000k. With increasing the number of agents in the
system, this cost almost remains constant.

V. SUMMARY AND FUTURE WORK

In this paper we looked at different matchmaking mech-
anisms and the most important issues of matchmaking pro-
cess. Comparing different approaches shows that each
mechanism has advantages and disadvantages. In terms of
flexibility and robustness, localized matchmaking seems to
have some advantages over a more centralized approach.
However, as far as the matching efficiency is concerned
localized matchmaking is less performing especially when
there is little or no interaction between clusters. In ad-
dition, peer-to-peer mechanisms reduce communication
overhead but they increase matching time. In terms of
the number of messages that must be passed in the system
in each trail, centralized matchmaking acts better but we
should take into account that for large scale systems this
cost increases linearly in centralized case and also large
scale systems can result in a prohibitive amount of traffic
for message passing.

Future work will focus on the idea of a dynamic view of
matchmaking where the conditions under which either ap-
proaches is more efficient, will be researched. This will al-
low us to design an architecture capable of modifying itself
given a particular context. For instance based on this idea
the entire system can be partitioned into segments such that
every segment has a matchmaker. Agents can then interact
with each other in a local neighborhood, and matchmaking
in different segments can take place in parallel. Splitting



7

and combining segments in case of entering new agents
and ending existing tasks must be implemented. Migra-
tion tasks between segments to balance workload and task
category distribution among segments and to reach a fully
matched configuration should also be taken into account.

REFERENCES

[1] K. Bertels, N. Panchanathan, S. Vassiliadis, and B. Pour
Ebrahimi. Centralized matchmaking for minimal agents. In Pro-
ceedings of the Conference on Parallel and Distributed Computer
Systems, page 9, November 2004.

[2] Dorigo M et al Bonabeau E. Inspiration for optimization from
social insect behaviour. Nature, 406, July 2000.

[3] Epema D. Bucher A. Local versus global queues with processor
co-allocation in multicluster systems. In Eighth Workshop on Job
Scheduling Strategies for Parallel Processing (in conjunction with
HPDC-11), pages 184–204. 2002.

[4] Katia Sycara Cuihong Li. A stable and efficient scheme for task
allocation via agent colition formation. In Algorithms for Coop-
erative Systems. World Scientific, 2004.

[5] Ch. Weinhardt D. Veit, J.P. Muller. Multidimensional matchmak-
ing for electronic markets. Journal of Applied Artificial Intelli-
gence, 16(9-10):853–869, 2002.

[6] T. Holvoet D. Weyns. Model for situated multi-agent systems
with regional synchronization. In Proceedings of Concurrent
Engineering, Enhanced Interoperable Systems, pages 177–188,
2003.

[7] Y. Yemini D.F. Ferguson and C. Nikolaou. Microeconomic al-
gorithms for load balancing in distributed computer systems. In
Proc. of International Conference on Distributed Systems, pages
491–499, 1988.

[8] Y. Yemini D.F. Ferguson, J. Sairamesh and C. Nikolaou. Eco-
nomic models for allocating resources in computer systems. In
Scott H. Clearwater, editor, Market-Based Control, pages 156–
183. World Scientific Publishing Co. Pte. Ltd., 1996.

[9] Gavoille. Routing in distributed networks: Overview and open
problems. SIGACTN: SIGACT News (ACM Special Interest
Group on Automata and Computability Theory), 32, 2001.

[10] Modi J., Jung H., Tambe M., Shen W., and Kulkarni S. A dynamic
distributed constraint satisfaction approach to resource allocation.
In Proceedings of Autonomous Agents and Multi-Agent Systems
Workshop on Distributed Constraint Reasoning, 2002.

[11] S.and P. Chalasani Jha, O. Shehory, and K. Sycara. A formal
treatment of distributed matchmaking. In Proc. of International
Conference on Autonomous Agents, pages 457–458, May 1998.

[12] Czajkowski K., Foster I., Karonis N., Kesselman C, Martin S.,
Smith W., and Tuecke S. A resource management architecture for
metacomputing systems. In The 4th workshop on Job Scheduling
Strategies for Parallel Processing, pages 62–82. 1998.

[13] Klusch M. K. Sycara, Lu J. and Widoff S. Matchmaking among
heterogeneous agents on the internet. In Proceedings. AAAI
Spring Symposium on Intelligent Agents in Cyberspace. 1999.

[14] Harada L. Kuokka D. Matchmaking for information agents. In
Proceedings of the 14th International Joint Conference on Artifi-
cial Intelligence, pages 672–678, 1995.

[15] J. F. Kurose and R. Simha. A microeconomic approach to opti-
mal resource allocation in distributed computer systems. IEEE
Transactions on computers, pages 705–717, May 1989.

[16] R. Lling, B. Monien, and F. Ramme. A study of dynamic load
balancing algorithms, 1991.

[17] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto
Yokoo. Asynchronous complete method for general distributed

constraint optimization. In Proceedings of the first international
joint conference on Autonomous agents and multiagent systems
Part I, July 2002.

[18] S. J. Mullender and P. M. B. Vitanyi. Distributed match-making.
Algorithmica, pages 367–391, 1988.

[19] E. Ogston and S. Vassiliadis. Local distributed agent matchmak-
ing. In Proceedings of the 9th International Conference on Coop-
erative Information Systems, pages 67–79, 2001.

[20] E. Ogston and S. Vassiliadis. Matchmaking among minimal
agents without a facilitator. In Proceedings. 5th International
Conference on Autonomous Agents, pages 608–615, May 2001.

[21] E. Ogston and S. Vassiliadis. A peer-to-peer agent auction. In
Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems Part I, pages 151–159,
July 2002.

[22] M. Preist C., Van Tol. Adaptive agents in a persistent shout double
auction. In Proc. of 1st International Conference on the Internet
Computing and Economics, pages 11–17, 1998.

[23] J. Anderson S. Camorlinga, K. Barker. Multiagent systems for
resource allocation in peer-to-peer systems. In Proceedings of the
winter international synposium on Information and communica-
tion technologies, pages 1–6, 2004.

[24] Jennings N.R. Vulkan, N. Efficient mechanisms for the supply of
services in multi-agent environments. Journal of Decision Sup-
port Systems, 28(1-2):5–19, 2000.

[25] Gerhald Weiss. Multiagent Systems. The MIT Press, 1999.


