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Abstract— The efficient processing of MultiMedia Appli-
cations (MMAs) is currently one of the main bottlenecks in
the media processing field. Many architectures have been
proposed for processing MMAs such as VLIW, superscalar
(general-purpose processor enhanced with a multimedia ex-
tension such as MMX), vector architectures, SIMD architec-
tures, and reconfigurable computing devices. The question
then arises: which architecture can exploit the character-
istic features of MMAs the most? In this paper, first, we
explain the characteristics of MMAs, after that we discuss
the different architectures that have been proposed for pro-
cessing MMAs. Subsequently, they are compared based on
their ability to exploit the characteristics of MMAs. Super-
scalar processors with dynamic out-of-order scheduling pro-
vide higher performance than VLIW processors and than
superscalar processors with in-order scheduling. Because
superscalar architectures include complicated control logic
for out-of-order execution, and because VLIW processors
have to decode every instruction slot in parallel and need
a register file with multiple read and write ports, they are
more complex than single-issue vector architectures.

Keywords: media processing, VLIW, SIMD, multimedia
extensions.

I. INTRODUCTION

A variety of multimedia processing algorithms are used
in media processing environments for capturing, manipu-
lating, storing, and transmitting multimedia objects such as
text, handwritten data, 2D/3D graphics, and audio objects.
Computer applications are becoming multimedia-rich and
the World Wide Web will make future applications contain
even more multimedia objects [27], [61], [48]. Multimedia
standards such as MPEG-1, MPEG-2, MPEG-4, MPEG-7,
JPEG2000, and H.263 put challenges on both hardware
architectures and software algorithms for executing differ-
ent multimedia processing jobs in real-time, because each
media in a multimedia environment needs different algo-
rithms, processes, and techniques [47], [43], [13].

The efficient processing of MultiMedia Applications
(MMAs) is currently one of the main bottlenecks in the
media processing field. To understand the need for new
processing for supporting emerging and next generation of
multimedia data, it is necessary to first understand the lim-
itations of the current architectural of support. Recently,
different architectures have been proposed for MMAs pro-
cessing. Designs of these architectures ranges from fully
custom to fully programmable dedicated architectures, and
to General-Purpose Processors (GPPs) with multimedia
extensions.

Architectural support for multimedia applications has
been classified in three categories by Fritts [23]:
application-specific processors, multimedia extensions to
a GPP, and media processors. Talla [64] has distinguished
those common approaches for handling multimedia ap-
plication namely, GPPs with Single Instruction Multiple
Data (SIMD), Very Long Instruction Word (VLIW) media
processing, and Application Specific Integrated Circuits
(ASICs). The question then arises: what architecture will
be able to best exploit the inherent features of MMAs?

The purpose of this paper is to provide an overview
of recent architectural approaches for multimedia process-
ing ranging from dedicated multimedia processor to pro-
grammable processor and GPPs with multimedia exten-
sions. We will also present a comparison between ar-
chitectures that have been used for designing multime-
dia processors. This paper is organized as follow. Sec-
tion II presents an overview of multimedia characteristics.
Section III describes different classifications of processors
that, have been proposed for processing MMAs and de-
scribes their advantages and disadvantages. Additionally,
different GPPs with MultiMedia eXtensions (MMX) are
evaluated and advantages and disadvantages of such sys-
tems distinguished for processing of MMAs are given. In
Section IV programmable multimedia processor are de-
scribed and evaluated. Finally, conclusions are stated in
Section V.
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Operation type Percentage
ALU 40%
Load/Store 26-27%
Branch 20%
Shift 10%
Integer Mult. 2%
Floating point 3-4%

TABLE I
OPERATION DISTRIBUTION IN MMAS.

II. CHARACTERISTICS OF MULTIMEDIA

APPLICATIONS

MMAs have many characteristics that make them
unique from General-Purpose Applications (GPAs). The
most important ones are the following [15], [58], [2], [3]:
• Real-time response: MMAs such as video conferencing
and electronic commerce often require real-time response.
In addition, they require a certain quality of service.
• Processing of streaming data: MMAs can keep their in-
struction code on-chip and commonly stream data in from
off-chip.
• Significant fine and coarse grained data parallelism:
Typically, MMAs perform the same operations on different
data item (e.g., pixels). In addition, many functions need
to be performed on these data values. Since these opera-
tions and functions are largely independent, it is possible
to exploit SIMD and Thread-Level Parallelism (TLP).
• Considerable data reorganization: In addition to the
SIMD nature of multimedia processing, most applications
also need to be able to reorganize the individual data com-
ponents efficiently to adjust for various data stream lay-
outs. Therefore, MMAs are not well suited for traditional
SIMD architectures where data reorganization can be ex-
pensive.
• Small loops: MMAs spend nearly 95% of their execu-
tion time over the two innermost loops. These loops tend
to have a large number of iterations, typically 10 or more,
with some loops having hundreds or thousands of itera-
tions [23], [25].
• High memory bandwidth requirement: The applications
process large data sets, putting a severe burden on memory
system.
• Small data types: MMAs typically use small integer data
types of 16 bits or less.

Additionally, MMAs perform significantly more arith-
metic operations than GPAs. Table I taken from [26],
depicts the operations distribution that are needed to im-
plement MMAs efficiently. As can be seen in this table
MMAs more perform integer arithmetic operations than
floating-point operations.

Name of Resource Required Number
Int. ALU 4
Memory Units 2
Branch Unit 1
Shifters 1
Floating P. U 1
Int. Multipliers 1

TABLE II
PROPER RATIO OF FUNCTIONAL RESOURCES FOR

PROCESSING MMAS.

Operand size Usage Frequency
8-bit 40%
16-bit 51%
32-bit 9%

TABLE III
DIFFERENT DATA TYPES IN MMAS.

Table II desired ratio of functional resources for MMAs
is also shown. As it is seen in this table the proper number
of integer ALUs and floating-point units for MMAs is 4
and 1, respectively [26].

Furthermore, the most important data types in MMAs
are usually small such as 8 and 16 bits. The data char-
acteristics of MMAs are important for two reasons: First,
subword parallelism uses small data types to exploit SIMD
parallelism. Second, media processors will have nar-
rower datapaths than GPPs because the data types are
smaller [62], [39], [50]. Most instructions process inte-
gers of only 8 or 16 bits. The only major exception to
this is graphics applications, which process mainly single-
precision floating-point values.

Table III depicts the distribution of operand size used
in MMAs. It shows that most operants are smaller than 16
bits. The memory behavior of MMAs is different from that
of GPAs. Most importantly, MMAs have high spatial lo-
cality but little temporal locality. Typically, the processor
loads a small amount of data, processes it, and it never or
rarely re-uses the data again.

Based on these characteristics, MMAs require different
architectures than GPAs. So the architectures that have
been proposed for processing MMAs are investigated in
the following section.

III. PROCESSOR ARCHITECTURES TO SUPPORT

MMAS

During the last few years we have been witnessing a
change of architectures for MMAs from fully custom to
fully programmable dedicated architectures [58], [3], [38],
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[37]. A number of Programmable Digital Signal Pro-
cessors (PDSP) have been used since 1980. They sup-
ported specific instructions such as MAC (multiply-and-
accumulate), REPEAT, and so on, in the instruction set
in order to improve both performance and programma-
bility. Hen [31] has given summary of characteristics
of early PDSPs as well as recent PDSPs. Hen classi-
fied them based on different implementation methods into
four groups, PDSP chip, PDSP core, multimedia PDSPs,
and native signal processing (NSP) instruction set proces-
sors. Multimedia PDSPs are specifically designed for au-
dio/video applications. One example of this group is the
Trimedia TM 1300 [17], [56]. NSP processors extend the
instruction set of a GPP to process multimedia data.

Dasu [13] has classified existing media processing
strategies according to either the evolution of processing
architectures or the functionality of the processors. Based
on the evolution of the processing architectures, exist-
ing architectures for media processing can be classified
as programmable processors, dedicated implementations,
and reconfigurable processors. Features such as paral-
lelism, flexibility, and memory intensive data processing
allow media processing architectures to be classified based
on the approach used to exploit parallelism, exploiting the
iterative nature of operations, and reduction of off-chip
memory transactions.

Panchanathan [52] and Dasu, and Panchanathan [14]
have indicated that there are two approaches in multimedia
processor design namely: dedicated and programmable.
Another, taxonomy of multimedia processing approaches
has been done by Ahmed [18]. This classification is based
on three established architecture models: vector proces-
sors, superscalar processors, and multimedia processors.
Borko [27] has classified processor architectures that have
been designed to support MMAs from fully custom to fully
programmable dedicated architectures and to GPPs with a
multimedia extension. His classification is illustrated in
Figure 1. We discuss this classification in more detail in
the following sections.

A. Dedicated Multimedia Processors (DMPs)

DMPs are typically custom designed architectures in-
tended to perform specific multimedia functions such as
video and audio compression and decompression, and 2D
and 3D graphics applications. DMPs use a variety of
architectural schemes, ranging from multiple functional
units with a RISC core processor to multiprocessors. The
most recent dedicated processors use SIMD and VLIW ar-
chitectures. According to [9] dedicated implementations
could become the best selection based on: available tech-
nologies, required computational bandwidth, and the tar-

get algorithm. Designs of dedicated multimedia proces-
sors range from fully custom architectures, with minimal
programmability, referred to as function-oriented architec-
tures to fully programmable architectures.

A.1 Function-Oriented Architectures

A function specific implementation is a direct mapping
of the multimedia processing tasks to hardware implemen-
tation optimized to execute the specific functions. Match-
ing of the individual hardware modules to the processing
requirements results in area efficient implementations. Ef-
ficiency and speed are typically better than that dedicated
by programmable architectures. The general design theme
for these types of processors consists of using a RISC core
processor for main control, and special hardware acceler-
ators for specific multimedia algorithms such as Discrete
Cosine Transform (DCT), quantization, entropy encoding,
and motion estimation. Some characteristics of this DSP
processors are [21]:
• Multiple data and instruction buses.
• Parallel execution of MAC operation.
• Limited number of instructions.
• Efficient loop control.
• Low-cost alternatives for specific applications.
• DSPs are optimized for performing regular, predictable,
computation-intensive tasks.
The advantages of this approach are the following. First,
the hardware overhead for control is minimized. Second,
the power consumption can be kept low. Third, DSPs
achieve high performance for some applications. The dis-
advantage of this kind of architectures is that they are only
suitable for specific functions and later extensions are not
possible without a redesign of hardware. Therefore, their
flexibility and adaptability to new applications is very lim-
ited. An example of a dedicated single-chip implementa-
tion of an MPEG-2 video encoder is shown in Figure 2.

A.2 Programmable Architectures

Programmable architectures for processing MMAs can
be divided into flexible programmable architectures, which
provide moderate to high flexibility, and adapted pro-
grammable architectures, which provide higher efficiency
but less flexibility. There are some approaches in
the design of programmable architectures such as Data-
Level Parallelism (DLP), Instruction-Level Parallelism
(ILP) [19], and TLP or adaptation to special algorithm
characteristics by implementing specialized instructions
and dedicated hardware modules that result in higher ef-
ficiency for a limited application field.

Programmable architectures have many advantages
such as flexibility, high performance, supporting a com-
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Fig. 1. Classification of processor architectures that support MMAs.

Fig. 2. Block diagram of a typical function specific architecture for a video encoder.

plete multimedia environment, and cost-effectiveness. Ad-
ditionally, programmable architectures can implement dif-
ferent tasks controlled by software. The main advantage of
programmable architectures is the increased functionality.
However, hardware for control and program storage and
software development time are their disadvantages.

An example of flexible programmable architectures is
the Multimedia Video Processor (MVP) [29]. Figure 3
shows a block diagram of its architecture. The MVP com-
bines a 32-bit RISC master processor and four 32-bit DSP
processor in a crossbar-based SIMD shared-memory archi-
tecture. The RISC master processor can be used for con-
trol, floating-point operations , audio processing, and 3D
graphics.

A.3 Adapted Programmable Architectures (APAs)

APAs provide increased efficiency by adapting the ar-
chitecture to the specific requirements of video coding ap-
plications. These architectures provide dedicated modules
for several tasks of the video coding/decoding (codec) al-
gorithm such as DCT module, or Variable Length Cod-
ing (VLC). One example of this group is the VideoRISC
Processor (VRP) from C-cube Microsystem. Its architec-
ture is depicted in Figure 4. The VRP consists of a 32-bit
RISC processor and two special functional units for VLC
and motion estimation. Specially designed instructions in
the RISC processor provide an efficient implementation of
the DCT and other video-related operations. The VRP can
perform real-time MPEG-1 encoding and decoding.

Advanced dedicated multimedia processors use SIMD
and VLIW architectural schemes and variations to exploit
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Fig. 3. Block diagram of the multimedia video processor with four DSPs and a Master Processor (MP).

Fig. 4. Block diagram of C-cube’s VideoRISC processor which has an adapted programmable architecture.

a high degree of parallelism [35].

A.4 VLIW

A VLIW processor has a multiple independent function
units and executes several operations in parallel. These
operations are placed in a very long instruction word. It is
the compiler’s responsibility to find independent instruc-
tions that can be grouped in a VLIW. VLIW processors
can achieve high performance by utilizing ILP and DLP.
A typical VLIW architecture is shown in Figure 5. In this
figure, where an instruction contains three opcodes, and
three registers for each operation, two sources and one des-
tination. Different fields of the long instruction word con-
tain the operations that activate different functional units.
VLIW architectures have many advantages. For exam-
ple, VLIW processors employ static instruction scheduling

performed at compile-time rather than dynamic scheduling
performed at run-time as in superscalar processors which
requires much more hardware. Furthermore, packing and
unpacking overhead is minimal. Since data items maintain
their individual identity, it is not required to always treat
them as a group [21].

These architectures also have many disadvantages. In
particular, the burden of operation scheduling is on by
compiler, and the resulting utilization and the obtained par-
allelism fundamentally depend on the available compiler
technology. Furthermore, all operations specified within
a VLIW instruction must be independent. VLIW func-
tional hardware is more expensive. While a packed SIMD
architecture exploits the same ALU hardware to execute
multiple operations on subwords, a VLIW requires multi-
ple functional units with full precision to achieve the same

142



6

Fig. 5. Block diagram of a typical VLIW processor with 3 Functional Units (FU).

level of parallelism.
In addition, VLIW register connectivity is more expen-

sive than that of an SIMD. A packed SIMD architecture
uses a single register file port to read or write multiple val-
ues, but a VLIW requires multiple ports, one per functional
unit. This is due to the fact that a VLIW architecture with
N 2-input/1-output functional units requires reading 2N

values and writing N values per cycle. For a single regis-
ter file, this means that 2N read ports and N write ports
are needed.

The Philip’s TM1000 [17], [56] contains a VLIW pro-
cessor, as well as a video and audio I/O subsystem. The
processor has an instruction set that is optimized for pro-
cessing audio, video, and graphics. A block diagram is
depicted in Figure 6. The TriMedia TM-1000 is a general-
purpose microprocessor for real-time processing of audio,
video, graphics, and communications data streams. The
key features of the Trimedia TM1000 are the following:
16 KB data cache, 32 KB instruction cache, 27 functional
units, 2 DSP ALUs that can each perform either 32-bit or
4 x 8-bit or 2 x 16-bit partitioned arithmetic operations. 2
DSP multipliers that can execute two 16-bit or four 8-bit
multiplications per cycle and, it can issue 5 instructions to
5 out of the 27 FUs per cycle (i.e., there are 5 slots in each
VLIW).

B. General-Purpose Processor (GPPs)

In order to enhance the performance of MMAs, GPP
vendors have extended their ISAs. These ISA extension
operate in a SIMD fashion to exploit the DLP present in
MMAs. GPPs apply the MicroSIMD [46] approach by
sharing their existing integer or floating-point data paths.
The goal in designing SIMD media ISA extensions for

GPP has usually been to utilize Subword Level Parallelism
(SLP) with existing hardware and without sacrificing the
general-purpose nature of the processor. Subword paral-
lelism provides a very low-cost form of small-scale SIMD
parallelism in a word-oriented processor. A word-wide in-
teger functional unit can be partitioned into parallel sub-
word units, with small hardware overhead. As illustrated
in Figure 7, a 64-bit adder may be partitioned into four 16-
bit adders. Such a partitionable adder allows four 16-bit
additions, or a single 64-bit addition, to be performed in
a single cycle. The overhead cost is very small, since the
same datapaths are used in either case: two 64-bit registers
read and one register write. A processor with two 64-bit
partitionable ALUs could support eight parallel 16-bit op-
erations with just a 6-ported (4 read and 2 write ports) reg-
ister file, while a processor with eight independent 16-bit
functional units requires a 24-ported register file.

Subword parallelism is a form of vector processing. A
register is viewed as a small vector with elements that are
smaller than the register size. This requires small data
types and large register sizes. Multimedia kernels process
small data types and the registers of GPPs satisfying these
requirements. In particular, the double-precision FP reg-
isters can hold several of such elements. The same op-
eration is applied to the subwords at the same time. The
SLP is a cost-effective solution to exploit the DLP present
in MMAs. There is no need to replicate the functional
units and the memory port can supply multiple elements
at no cost. Initial implementations of GPPs with multi-
media extensions are Intel’s MMX [55], [54], Sun’s Vi-
sual Instruction Set (VIS) [68], Compaq’s Motion Video
Instructions (MVI) [4], MIPS Digital Media eXtension
(MDMX) [49], and HP’s Multimedia Acceleration eXten-
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Fig. 6. Block diagram of the Philip’s Trimedia TM1000.

Fig. 7. MicroSIMD Parallelism uses packed data types and a partitionable ALU.

sion (MAX) [44], [45]. These extensions supported only
integer data types and were introduced in the mid-1990’s.
3DNow [1] was the first to support floating-point media
instructions. It was followed by Streaming SIMD Exten-
sion (SSE) and SSE2 from Intel [59], [67]. Motorola’s Al-
tiVec [16] supports integer as well as floating-point media
instructions.

The main differences between these processors are in
the way that they reconfigure the internal register file struc-
ture to accommodate SIMD operations, and the multime-
dia instructions they choose to add. Multimedia instruc-
tion sets can be broadly categorized according to the loca-
tion and geometry of the register file upon which SIMD in-
structions operate. The alternatives are reusing the existing
integer or floating point register files, or implementing an
entirely separate one. The type of register file affects the

width and therefore the number of packed elements that
can be operated on simultaneously (vector length). De-
spite the similarities, each approach to subword extensions
is unique [32]. Key differences include the amount of ad-
ditional hardware required, ranging from MAX-2, which
reuses the integer registers and execution units and re-
quires virtually no additional execution hardware, to Al-
tiVec, which requires an entirely new execution unit.

In Table IV common and distinguishing features of
available GPPs with multimedia instruction set extensions
are summarized [3], [31], [63], [22].

The most important features of some GPPs with special-
ized media instruction set extensions are:

• The processors issue and execute two or more multime-
dia instructions per cycle.
• These processors issue and execute instructions out-of-
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GPP with
Multimedia exten.
ISA Name AltiVec MAX-1/2 MDMX MMX/ VIS MMX/ SSE SSE2

3DNow SIMD
Company Motorola HP MIPS AMD Sun Intel Intel Intel
Instruction Set Power PC PARISC2 MIPS-V IA32 P. V.9 IA32 IA64 IA64
Processor MPC7400 PA RISC R1000 K6-2 Ultra Pentium2 P.3 P.4

PA8000 Sparc
Date 1999 1995 1997 1999 1995 1997 1999 2000
Datapath 128-bit 64-bit 64-bit 64-bit 64-bit 64-bit 128-bit 128-bit
Size of Reg. File 32x128b (31) /32x64b 32x64b 8x64b 32x64b 8x64b 8x128b 8x128b
Shared with Dedicated Int. Reg. FP Reg. Dedicated FP Reg. FP Reg. Dedicated Dedicated
Int. data types
8-bit 16 8 8 8 8 16 16
16-bit 8 4 4 4 4 4 8 8
32-bit 4 2 2 2 4 4
64-bit 2 2
Int. Arith.
Shift Right/Left Yes Yes Yes Yes Yes Yes Yes Yes
Mul.-add Yes No No Yes Yes Yes Yes Yes
Shift-Add No Yes No No No No No No
Floating Point Yes No Yes Yes No No Yes Yes
Single Precision 4x32 2x32 4x16 4x32

2x32
Double Precision 1x64 2x64
Accumulator No No 1x192b No No No No No
Num. of Ins. 162 (9) 8 74 24 121 57 70 144
Num. of operands 3 3 3-4 2 3 2 2 2
Sum of Abs. Diff. No No No Yes Yes No Yes Yes
Modulo Add/Sub 8, 16 16 8, 16 8, 16 16, 32 8, 16 8, 16 8, 16

32 32 32, 64 32, 64 32,64
Satura. Add/Sub U8, U16, U32 U16, S16 S16 U8, U16 No U8, U16 U8, U16 U8, U16

S8, S16, S32 S8, S16 S8, S16 S8, S16 S8, S16

TABLE IV
SUMMARY OF AVAILABLE MULTIMEDIA EXTENSION WITH GPP (SN AND UN INDICATE N-BIT SIGNED AND UNSIGNED

INTEGER PACKED ELEMENTS, RESPECTIVELY. WHILE VALUES WITHOUT A PREFIX U OR S IN LAST ROW, N, INDICATE

OPERATIONS WORK FOR EITHER SIGNED OR UNSIGNED VALUES).

order. To do so, they require a substantial amount of hard-
ware.
• These hardware components occupy a large portion of
the silicon area and contribute significantly to the power
dissipation.
• These processors employ a dynamic branch prediction
technique.
• The cache mechanism is designed to exploit 1D locality
of consecutive addresses, but media applications require
multidimensional locality of accesses.
• The word lengths of these processors is 32 or 64 bits.
But the word lengths needed for multimedia applications
are typically 8 or 16 bits.
• They implement in excess of 15 million transistors on a
chip.

The SIMD efficiency of these processors is often low,
because the overhead/supporting instructions dominate the

dynamic instruction stream [66]. Additionally, the execu-
tion time is also increased because of conventional archi-
tectural limitations such as cache misses, resource stalls,
and branch misspeculations. Multimedia extensions have
proven to provide significant performance benefits by ex-
ploiting the DLP present in multimedia codes. However,
these GPPs equipped with multimedia extensions have the
following limitations:
• Memory misalignment problems: The nature of sub-
word data introduces memory misalignment problems.
Accessing data that is not aligned requires extra instruc-
tions.
• Mismatch between storage and computational formats:
The computational format is usually larger than the storage
format.
• Limitation on the amount of parallelism: The fixed size
of the multimedia registers limits the amount of paral-
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lelism that can be exploited by a single instruction to at
most 8 (VIS, MMX) or 16 (SSE, AltiVec) parallel opera-
tions, while more parallelism is present in MMAs.
• Overhead instructions: Implementations of multimedia
kernels with short-vector SIMD extensions require a sig-
nificant amount of overhead for converting between differ-
ent packed data types and for data alignment, increasing
the instruction count. For VIS up to 41% of the total in-
struction count constitutes overhead [60].
• No strided memory accesses: Most GPPs can only per-
form stride-1 memory accesses. It is therefore, inefficient
to access, for example, a column of a matrix.
• Scalability: The scalability of subword parallel proces-
sors cannot be achieved by simply increasing the machine
word size. It can be argued that subword processing is a
low cost addition to GPPs to exploit the wide datapaths.
However, reversing the argument may not be valid. Scal-
ing the performance by doubling the machine word size
would require increasing the data path size beyond that re-
quired for other GPAs.
Additionally, the main drawback of the multimedia in-
struction sets is that they suffer from a lack of compiler
support [5]. This limits developers to using in-line assem-
bly macros and low-level library calls. Table V (taken
from [31]) compares different solutions for multimedia
processing.

B.1 Efficiency of microSIMD architectures

MicroSIMD architectures support the subword paral-
lelism defined in the multimedia extensions for GPPs.
They are more efficient than other parallel architectures for
the design of media processors. A Multiple Instruction,
Multiple Data (MIMD) architecture consists of multiple
processors, and each processor can execute a different in-
struction in each cycle. Each processor has its own register
file. For four processors, four instructions must be issued.
Some sort of interconnection network between the regis-
ter files is needed to move data between the processors.
A SIMD has the same datapaths as a MIMD architecture,
except that a single instruction is issued to all the proces-
sors in a cycle. In superscalar processor, the register file
is shared between M parallel functional units. In each cy-
cle, N different instructions are issued, where N ≤ M .
VLIW architectures look like a superscalar architecture
except that only a single instruction is issued each cycle.
However, this single instruction consists of up to M dif-
ferent operations, one for each of the parallel functional
units [46].

The parallel functional unit approach of superscalar and
VLIW architectures is more efficient than the parallel pro-
cessor approach of MIMD and SIMD. Sharing the register

file reduces the overhead of having to move data between
the register files via an interconnection network or cross-
bar switch. The microSIMD approach is more efficient
than the superscalar and VLIW architectures, because the
register file has been simplified considerably without los-
ing any parallelism.

Both microSIMD and SIMD architectures require only
one instruction, whereas MIMD multiprocessors and su-
perscalar processors require n instructions for n-way par-
allelism. While VLIW architectures require only one in-
struction, this contains n different operation fields. The re-
duced number of instructions of microSIMD architectures,
or reduced code size with respect to VLIW architectures,
is a cost reduction since it reduces the instruction mem-
ory requirements. It is also a performance benefit, since
potential cache misses during instruction fetches are also
reduced. Figure 8 shows the number of instructions that
need to be issued in order to achieve the same degree of
parallelism in the different parallel architectures.

Let us assume that each architecture supports 4-way par-
allelism and that require designators are 5 bits wide, allow-
ing 32 registers to be addressed. Table VI depicts the area
requirements of the register files of the different architec-
tures. The MIMD and SIMD architectures both have four
register files, with 128 registers in total, and each register
capable of holding a 16-bit operand. Their area require-
ments are proportional to the total number of bits in all four
register files, with an overhead of d per register file, and an
addressing overhead of e per register. The microSIMD ar-
chitecture can hold the same number of 16-bit operands in
one quarter the number of registers, since these are packed
as four 16-bit subwords per 64-bit register. Hence, it has
slightly less area requirements due to lower area overhead
for the registers and register file than the MIMD or SIMD
architectures.

A microSIMD architecture is less flexible than a MIMD,
superscalar or VLIW architecture, however, because the
same operation needs to be performed on every data ele-
ment. Nevertheless, because pixel-oriented computations
exhibit high degrees of data parallelism, filling four or
eight subword parallel slots for microSIMD execution is
easy, and linear [46].

B.2 Comparison Between Static and Dynamic Scheduling

A comparison between static and dynamic scheduling
on the three basic architectures, out-of-order superscalar,
in-order superscalar, and VLIW processor has been given
in [24], [65]. The same conclusions that can be drawn from
these studies are:
• Static scheduling performs nearly as well as dynamic in-
order scheduling for media processing, with average In-
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Solution Performance Flexibility Power Cost Density
ASIC High Low Low Low Medium
Programmable architecture Medium High Medium High Medium
GPPs with multimedia extension Low High Medium High High

TABLE V
COMPARISON OF DIFFERENT SOLUTIONS FOR MULTIMEDIA PROCESSING.

Fig. 8. Instructions needed per cycle for parallelism of degree 4.

Parallel # of Register Total Width of Max. Number Approximate Area
Architecture Files Register Register of 16-bit Operands for all of Registers
MIMD 4 128 16-bit 128 F(4*32*16)+4(d+32e)
SIMD 4 128 16-bit 128 F(4*32*16)+4(d+32e)
Superscalar 1 32 16-bit 32 F(32*16)+d+32e
VLIW 1 32 16-bit 32 F(32*16)+d+32e
MicroSIMD 1 32 64-bit 128 F(4*32*16)+d+32e

TABLE VI
STORAGE CAPACITY AND AREA REQUIREMENTS WITH FIXED NUMBER OF BITS PER REGISTER ADDRESS. (NUMBER OF

REGISTERS PER REGISTER FILE IS 32 REGISTERS. ”D”: AN OVERHEAD PER REGISTER FILE, AND ”E”: AN ADDRESSING

OVERHEAD PER REGISTER).

structions Per Cycle (IPCs) of 1.32 and 1.38 for VLIW
and in-order superscalar, respectively.
• As can be expected, dynamic out-of-order scheduling
with an average IPC of 2.17, provides much better per-
formance than static scheduling.
• Out-of-order superscalar processors achieve 64% better
performance on average than VLIW processors over all
MediaBench applications [40].
• Out-of-order execution and branch prediction are impor-
tant for MMAs.

Additionally, static branch prediction is typically much
less accurate than dynamic branch prediction. The authors
in [65] have found that SIMD versions of some bench-

marks (like filtering, autocorrelation, and dot product) ex-
hibit a speedup ranging from 1.0 to 5.5 over non-SIMD, 3-
way superscalar processor that performs dynamic schedul-
ing, while the speedup of the VLIW versions ranges from
0.63 to 9. Additionally, out-of-order execution and branch
prediction techniques are extremely important to exploit
the data parallelism in media applications.

B.3 Vector Processors

A vector processor is a processor that can processes en-
tire vectors with one instruction. Vector architectures are
a good candidate for multimedia processing [20], [42], be-
cause they are an effective way to exploit DLP. There are
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two fundamental approaches to implement a vector pro-
cessor. The first way is to replicate the functional units and
achieve parallelism by processing all elements of the vec-
tor at the same time. This necessitates an interconnection
network that introduces extra cost in the design and many
paths will be needed from the memory to the processor.
Such architectures are called a parallel vector processors.
The second method approach is based on having one or
relatively few pipelined functional units, that process vec-
tor elements in a pipelined fashion. These processors are
called pipelined vector processors. This approach has been
more widely adopted than parallel vector processors.

In [41] it has been shown that a vector architecture is
a cost-effective solution for applications with high DLP.
Based on the high DLP of multimedia applications, a vec-
tor architecture is a more cost-effective architecture than
a superscalar architecture. The Intelligent RAM (IRAM)
project [53] investigates having the vector processors in
the memory. This architecture exploits the high memory
bandwidth of RAM and incorporates a vector processor
that can exploit the high bandwidth.

The Vector IRAM (VIRAM) [36] is a vector architec-
ture that supports narrow data types. The vector elements
can be 16, 32, or 64 bits wide. A control register speci-
fies the element size. Based on [36], a cache-less VIRAM
is 2 times faster than a 4-way superscalar processors run-
ning at a 5 times higher clock frequency and consumes 10
times more power. The VIRAM architecture, despite is-
suing only a single instruction per cycle, is also 10 times
faster than 5- to 8-way VLIW architecture.

Vector processors provide performance benefits for both
partially vectorizable programs with short vectors and
highly vectorizable benchmarks. Furthermore, the VI-
RAM microarchitecture has significantly lower complex-
ity than superscalar processors. Because both the vector
coprocessor and the main memory system are modular, the
control logic is simple, and there is no need for caches
or circuit design for high clock frequency. On the other
hand, superscalar processors include complicated control
logic for out-of-order execution, which is difficult to de-
sign at high clock rates. VLIW processors are also more
complicated than single-issue vector processors. Addition-
ally, VLIW architectures shift significant complexity to
the compiler. The scalability of the VIRAM architecture
is better than that of other architectures like superscalar
or VLIW. For example, in the VIRAM compared to the
single-lane case, two, four and eight lanes lead to approxi-
mately 1.7x, 2.5x and 3.5x performance improvement, re-
spectively.

IV. PROGRAMMABLE MULTIMEDIA PROCESSORS

(PMP)

Media processors are currently only using subword par-
allelism, ILP, and specialized instructions and coproces-
sors (DCT, VLC, motion estimation) for providing high
performance. Two other approaches to improve perfor-
mance include higher frequency and improved ILP. ILP
typically requires more resources to achieve performance
gains. Increasing frequency and adding dynamic schedul-
ing hardware both require increased power, area and pro-
cessor design time [24]. Additionally, increasing processor
frequency leads to deeper pipelines, longer instruction la-
tencies, and increased memory latency, all of which reduce
IPC. However, current solutions for media processing do
not provide all the features necessary to obtain a high com-
putational, low-cost, low-power, real-time response, and
programmability for supporting the needs of MMAs, spe-
cially, mobile media applications. The drawbacks of ex-
isting multimedia processing approaches are summarized
below:

• The function-oriented approach offers the advantages of
high speed and low power, but their design and debugging
phases involve a significant amount of time. Additionally,
they are suitable only for specific functions, and future ex-
tensions are not possible without a redesign of hardware.
Therefore, they lack the flexibility to accommodate to al-
gorithm modifications.
• Programmable architectures offer flexibility in imple-
mentation, but their power dissipation is high, often too
high for Mobile applications.
• Only a few special-purpose programmable processors
can be programmed in a High-Level Language (HLL),
while most of them offer firmware programming only.
• Most architectures for processing MMAs do not offer
the facility to exploit TLP, which is essential to support to
flexibility at higher levels of the application as in the case
of MPEG-4.
• Adapted programmable architectures provide dedicated
modules for several multimedia tasks, but they are not suit-
able for multi-standard and multi-format media applica-
tions.
• GPPs equipped with multimedia extensions are suitable
for GPAs, but incur overhead instructions and cannot ex-
ploit all the DLP in MMAs.

Additionally, the complexity and variety of techniques and
tools and the high computation, storage, and I/O band-
widths, multi-format and multi-standard associated with
multimedia processing pose challenges, particularly from
the points of scalability, high flexibility, resource utiliza-
tion, dynamic adaptation capabilities, and real-time imple-
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mentation. For example, MPEG-4 and MPEG-7 require a
great deal of video processing using advanced algorithms.
To permit these methods, multimedia is moving away from
simple channel and frame-based representations towards
an object-based representation of multimedia. These ob-
jects describe real-world objects, so each with its own au-
dio, visual, and graphical characteristics specifying its spa-
tial and temporal behavior. The advantages of object-based
representation includes more flexibility for object manip-
ulation and an increased ease of user interaction [7], [6],
[28]. However, based on [33], for the next generation of
multimedia, parallel media processors will prove the best
alternative as they can offer both the performance and flex-
ibility through specialized high-speed, highly parallel ar-
chitectures that are programmable using a HLL. Because a
suitable media processor for processing full MMAs elim-
inate the need for many separate processors within mul-
timedia systems. Additionally, the programmable media
processors provide several important benefits over discrete
fixed function multimedia solutions. First, programmable
media processors have lower cost, because using a sin-
gle programmable device, the discrete fixed-devices can
be replaced [10]. Second, programmable media proces-
sors have bigger manufacturing flexibility, because a sin-
gle hardware platform can be used for different markets
by simply changing software. Third, media processors can
inherit many features from DSP architectures in their data
path architecture. For example, the direct connection of
functional units, which is used in the multiply-accumulate
architectures of DSPs. The fourth advantage is a large
register file that is useful for storing intermediate data in
MMAs such as video compression/decompression. Fur-
thermore, media processors can use non-cache memories
to store programs and data in the same method as internal
memories are used in DSPs [9], [30].

In the following, we provide a list of research ques-
tions that need to be investigated in order to design a cost-
effective and flexible media processing systems.

• An investigation of the trade-offs between processing
power and processor-memory bandwidth for a restricted
area and low-power implementation based on the require-
ments of MMAs.
• Detailed analysis of the computational complexity, va-
riety of techniques, formats and standards associated with
multimedia processing.
• Evaluation of real-time constraints for supporting next
generations of MMAs.
• Investigation of different types of parallelism such as
DLP, ILP, and TLP.
• Understanding of the inter-processor communication
patterns for system on chip (SOC).

• To consider the best memory organization based on tem-
poral and spatial behavior of MMAs.
• More on-chip memory for supporting streaming data.
• Add more functional units based on requirements of
MMAs.
• Provide greater flexibility using a HLL programmability
for accelerating several multimedia functions simultane-
ously.
• Investigation of data representation, data type, datapath
width, and memory hierarchy for supporting MMAs.
• Selection the best architecture for supporting future
MMAs (MIMD, SIMD, microSIMD, superscalar, and
VLIW architectures).
Recently, many new architectures have specially been pro-
posed for processing MMAs. In [8] has been proposed
an ISA extension called Complex Streamed Instructions
(CSI) for increasing parallelism by processing of two-
dimensional data streams. The CSI has several advan-
tages. First, CSI does not put an architectural limitation on
the number of subwords that are processed in parallel, be-
cause CSI processes data streams of arbitrary length. Thus,
the number of bits or data elements that will be processed
in parallel is not visible to the programmer. Second, CSI
minimizes the overhead caused by data alignment by per-
forming alignment in a hardware. The CSI does not also
need any loop control instructions, because CSI processes
streams of arbitrary length.

Matrix registers with accumulators are introduced in
the Matrix Oriented Multimedia (MOM) ISA [11], [12].
The MOM architecture investigates combining traditional
pipelined vector processing with subword processing. The
MOM architecture relies on having a vector register file
where every element contains subwords that are processed
in parallel. The addressing mode is extended to stride-n
access, where every element is loaded separated by an n-
byte gap. Two key features distinguish MOM from CSI.
First, MOM is a register-to-register architecture that use
sectioning when the data do not fit into the MOM regis-
ters. The second, MOM requires overhead instructions for
data conversion.

Another related architecture for processing MMAs is
the Imagine processor [34], [51], which has a load/store
architecture for one-dimensional streams of data records.
Imagine is a stand-alone multimedia coprocessor. The fo-
cus of the Imagine project is to develop a programmable
architecture that achieves the performance of special pur-
pose hardware on graphics and image/signal processing.
This is accomplished by exploiting stream-based compu-
tation at the application, compiler, and architectural level.
The Imagine stream architecture is a novel architecture
that executes stream-based programs. It provides high
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performance with 48 floating-point arithmetic units and a
area and power-efficient register organization. A stream-
ing memory system loads and stores streams from mem-
ory. A stream register file provides a large amount of on-
chip intermediate storage for streams. Eight VLIW arith-
metic clusters perform SIMD operations on streams dur-
ing kernel execution. Kernel execution is sequenced by a
micro-controller.

A. The need for reconfigurable media processing

A designer who wants to implement an application has
to decide between performance or generality. On the one
hand, there are hardware realizations that are optimized
to specific problems and exploit parallel and spatial exe-
cution of operations or functions such as ASICs. On the
other hand, there are flexible software solutions, which are
slow, but suitable to solve variety of applications such as
DSPs, and GPPs [57]. A relatively new development in
integrated circuits, Field-Programmable Gate Arrays (FP-
GAs) with static RAM programming, offer a third option.
They allow more customization to either different MMAs
or an adaptation to specific functions during run-time. Ad-
ditionally, reconfigurable solutions provide low cost, low
power, low chip area and high flexibility [14]. In tradi-
tional programmable multimedia processors, flexible soft-
ware is executed on a fixed hardware architecture. In re-
configurable computing, the hardware is flexible as well.
Hence, the main advantage of reconfigurable architectures
is the combination of almost software flexibility with high
performance. This is particularly useful for object-based
video coding using MPEG-4. MPEG-4 employs a variety
of algorithms and coding modes requires a more generic
approach in hardware than the dedicated approach.

V. CONCLUSIONS

Recently, multimedia processing is the technology for
a wide variety of applications. Multimedia processing
poses very high demands on devices for transmission, stor-
age, and computation. The growing number of interna-
tional multimedia standards such as MPEG-1, 2, 4, and 7
presents challenges for both hardware and software that
should perform complex multimedia processing in real-
time, because every application in a multimedia environ-
ment requires different algorithms, processing techniques,
and hardware. MMAs have some features such as real-
time response, intensive computation for highly regular
operations, and organized by small loops. The efficient
processing of MMAs is currently one of the main bottle-
necks in the field of media processing. Many architec-
tures have been proposed for processing MMAs such as
function-oriented approaches, adapted programmable ar-

chitectures, VLIWs, GPPs enhanced with a multimedia
extension, vector architectures, SIMD architectures. The
function-oriented approach offers the advantages of high
speed and low power, but they are suitable only for a spe-
cific application or applications , and future extensions are
not possible without a redesign of the hardware. Pro-
grammable architectures offer more flexibility, but their
power dissipation is usually high. Adapted programmable
architectures provide dedicated modules for several mul-
timedia tasks, but they are not suitable for multi-standard
and multi-format of media applications. GPPs equipped
with multimedia extensions are suitable for GPAs, and
have overhead instructions and cannot exploit all DLP
present in MMAs.

Superscalar processors with dynamic out-of-order
scheduling provide higher performance than VLIW and
superscalar processors with in-order scheduling. Vector
processors provide performance benefits for both partially
vectorizable programs with short vectors and highly vec-
torizable benchmarks. For example, the VIRAM archi-
tecture is 2 times faster than a 4-way superscalar proces-
sors running at a 5 times higher clock frequency and con-
sumes 10 times more power. The VIRAM architecture, de-
spite issuing only a single instruction per cycle, is also 10
times faster than a 5- to 8-way VLIW architecture. More-
over, the VIRAM microarchitecture has significantly lower
complexity than superscalar processors.

The complexity and variety of techniques and tools
and the high computation, storage, and multi-formats
and multi-standards associated with multimedia process-
ing pose challenges, particularly from the points of scala-
bility, high flexibility, high performance, resource utiliza-
tion, dynamic adaptation capabilities, and real-time im-
plementation. However, parallel media processors are ex-
pected to be best candidate for processing the next gen-
eration of multimedia applications, because they can pro-
vide both the performance and flexibility through special-
ized high-speed, highly parallel architectures that are pro-
grammable using a HLL.
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