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Abstract

In this paper, we discuss the issues involved in de-
signing ASIPs and more specifically when combined
with GPP’s. Such a design process involves several
steps and here we focus on one of them: the pro-
gram transformation phase, the second step of the
design process that is required when certain parts
of the application are extracted and will be exe-
cuted on a reconfigurable component. Over the last
years, many algorithms have been developed and pro-
posed. In this paper we provide an overview of exist-
ing program transformation approaches and for each
of these, we present a critical evaluation, underlining
the differentiating features as well as the strengths
and weaknesses. We discuss to what extent they can
be used for reconfigurable hardware and propose po-
tential improvements.
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I. Introduction

Electronic devices are very common in everyday life.
It’s enough to think about mobile phones, digital ca-
meras, electronic protection systems in the cars, etc.
This great variety of devices can be implemented using
different approaches and technologies. Usually these
functionalities are implemented using either General
Purpose Processors (GPPs) or Application Specific
Integrated Circuits (ASICs) or Application Specific
Instruction-Set Processors (ASIPs). GPPs can be
used in many different applications and contrast with
ASICs that are processors designed for a specific ap-
plication such as the processor in a TV set top box.

The main difference between GPPs and ASICs is
in terms of flexibility. The programmability of GPPs
supports a broad range of possible applications but
leads to more power use of due to the inefficient units
consumption. On the other side, ASICs are able to
satisfy specific constraints such as size, performance

and power consumption using an optimal architecture
for the application, but designing and manufacturing
an ASIC today presents some problems [9]. Due to
shrinking geometries, this design complexity grows
exponentially and the high mask and testing costs
constitute a significant part of the manufacturing cost.

The last years have shown an increased popularity
of processors with a customizable architecture, also
known as Application Specific Instruction-Set Proces-
sors (ASIPs). ASIPs are situated in between GPPs
and ASICs: they have a partially customizable In-
struction Set and perform only a limited number
of tasks. Table I summarizes the main differences
between ASIPs and the other two approaches.

These processors offer the possibility to extend
their instruction set for a specific application, intro-
ducing customized functional units for a given do-
main. Customization allows increased performance
reducing power consumption by not having unneces-
sary functional units. In that way, they combine the
flexibility of software with the performance of hard-
ware.

Consequently, designers are shifting toward soft-
ware solutions even at some loss of design quality
measured by area, delay, power. Moreover it is clear
that writing and debugging software is cheaper than
designing, debugging and manufacturing a complete
processor. The programmability of ASIPs therefore
avoids the development of a new complete processor
and it allows to concentrate the design efforts exclu-
sively on the special datapath.

What the designers want to achieve is to design an
instruction set which minimizes some metric (typically
run time, memory size, etc.). The starting point of
the design process of this processor is application code
written in a high-level language such as C. The first
step consists of profiling the application software to
find the computation intensive segments of the code.
The original application is then transformed to in-
corporate the new instructions and to guarantee the
equivalence of the modified program after which it
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Power
consumption

Programmability Strengths Weakness

GPP High Complete - Flexibility
- Power
- Efficient use of functional

components

ASIP Medium Partially
customisable IS

- Customization
- Reduced power consumption

- Not yet a mature discipline

ASIC Low None

- Power consumption
- Possibility to satisfy specific

constraints
- Performance

- Design complexity due to
shrinking geometry

- Manufacturing costs

TABLE I
Main differences between GPPs, ASIPs and ASICs.

is compiled to the heterogeneous platform. What
we want to examine is the program transformation
phase that is required when certain parts of the ap-
plication are extracted and will be executed on the
reconfigurable component. This phase consists of two
parts: a part which selects pieces of code to extract
and a node collapsing part which collapses the piece
of code in a single node.

Over the years, many algorithms have been de-
veloped and proposed. Roughly the problem consists
in detecting clusters of operations which, when im-
plemented as a single complex instruction, maximize
some metric. Such clusters have to satisfy some con-
straints such as the number of inputs and the number
of outputs. A large number of these approaches have
a graph theoretical approach. In the remainder of the
paper we present a critical evaluation of a number of
these approaches. The next section is dedicated to the
features of the existing approaches. Section III pro-
vides a critical discussion. We conclude with section
IV.

II. Existing approaches

We can distinguish between two categories address-
ing the problem of Instruction-Set extension: a first
approach consists of finding frequently used patterns
in the dataflow graph of the application code. The
patterns studied are rather small and they allow mul-
tiple input and output (e.g. [6], [7], [3], [11]).

In [6], the authors want to add special single- and
multiple-cycle instructions to a small set of primitive
instructions. The exploration of the design space is
limited by the complexity of the special instructions.
They transform the problem of instruction generation
in a modified subset-sum problem to generate an opti-

mal Instruction-Set including multi-cycle complex in-
structions as well as single-cycle complex instructions.
In other words, the problem becomes: given a set S
which represents the gains of the instructions, find a
subset of S whose sum is limited and such that the
generated instructions corresponding to the selected
gains should be used as much as possible in the ap-
plication and the number of different instructions cor-
responding to the gains should be as small as possi-
ble. To solve this type of problem, the authors exploit
the subset-sum problem solver ([14]) to synthesize ap-
plication specific instructions. A similar approach is
described in [7] although it is limited to single-cycle
complex instructions.

The second category deals with growing clusters
having single output (e.g. [5]) or multiple outputs
(e.g. [10], [8], [1], [15]) until some constraint is vio-
lated. Other approaches (e.g. [2]) combine the au-
tomatic identification of IS extension and symbolic
algebraic manipulation.

An other method to address the problem could be
found in dynamic ISA augmentation ([12]). Here the
authors determine at runtime which instructions could
be collapsed into a single instruction eliminating in-
terlock. They are limited in the number of input and
output and function to perform the problem. More-
over they consider critical paths of few machine cycles
and they are limited in the scope of instruction text
which they consider for dynamic ISA augmentation.

In order to illustrate the respective approaches, we
discuss one of each in more detail.

The first approach we examine is related to a ge-
neral design methodology and not to a specific ap-
plication. In [5], the authors explore the possibility
of enabling a partial customizability of the VLIW
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processors for embedded applications, by exploiting
FPGA technology.

The target architecture is a VLIW processor with
Functional Units (FUs) grouped in clusters and each
of these contain also the register file that the FUs
share. The IS architecture provides instructions that
copy values between register files of different clus-
ters. Some FUs are application-specific reconfigurable
functional units (RFUs) implemented through FPGA
technology. Furthermore they consider a partially cus-
tomizable CPU including a certain set of FUs, capa-
ble of a native IS that is customized via the repro-
grammable FUs.

They present a methodology to select the critical
parts of an application that are best suited to be im-
plemented on the RFUs so that it is possible to reduce
the overall execution time. A RFU represents an ad-
ditional datapath of the processor which executes a
specialized operation implementing the critical part
extracted from the application algorithm and mapped
onto the FPGA.

The critical parts are identified by analyzing the
connected Direct Acyclic Graph (DAG) created of the
critical basic blocks identified in the profiling phase of
the application algorithm. The nodes represent primi-
tive operations and can have at most two inputs (they
represent assembler-like instructions) and one output
which can be used as input to multiple destination
nodes. The edges represent data dependencies.

A critical part of a DAG is a subgraph and theoret-
ically the speedup obtained by its special implemen-
tation on FPGA is directly proportional to its size.
For this reason, the algorithm is trying to identify the
largest possible subgraph. To simplify synchroniza-
tion between RFU and CPU, the RFUs are designed
with some restrictions: they cannot have direct access
to the data cache and to simplify register file structure
and interaction with the other functional units, only
multiple read and single write operations are allowed.

This results in graphs having an unlimited number
of inputs and a single output, called MISO (Multiple
Input Single Output).

Let Gi = (V i, Ei) a subgraph where V i represents
the set of nodes and Ei represents the set of edges
departing from such nodes. If for each node vi

k ∈ V i,
except the output node vi

o, all edges originating from
vi
k end on an other node belonging to V i then Gi is

called MISO (note that incoming edges in V i could be
originated from nodes not belonging to V i). A MISO
not completely included in any other MISO is called
maximal MISO and is indicated as MaxMISO so max-

imality refers to the impossibility of including other
nodes which can lead to violate the output constraint.
The MaxMISO therefore satisfies two properties:

• Two MaxMISOs cannot partially overlap.
• All MISOs in the DAG are either MaxMISOs or
contained in a MaxMISO.

The algorithm analyzes the DAG looking for
MaxMISO: it starts from a node and recursively tries
to include its parents until a non legal node is encoun-
tered. A non legal node is defined as a node whose in-
clusion violates constraints such as violating the out-
put constraint of a single output. When a MaxMISO
is found, its nodes are removed from the set of nodes
under analysis because of the first property given that
two MaxMISOs cannot partially overlap. This im-
plies another aspect related to the complexity of the
algorithm: each node is visited only once and so the
complexity is linear with the number of nodes.

The set of MaxMISOs is evaluated under different
aspects and isomorphic MaxMISOs are tagged. We
remember that two graphs are isomorphic if there is a
bijection between the edges of the two graphs. If there
are physical limitations on the number of possible im-
plementations, the possible candidates are weighted
in terms of occurrencies in the DAG and in terms of
the potential speedup obtained.

An other approach in the same direction is de-
scribed in [8]. The goal is similar: to present an algo-
rithm that automatically extracts operation from the
application code to implement on customized func-
tional units.

Let S ⊆ G be a subgraph of a graph G. If every
path from u ∈ S to v ∈ S involves only nodes belong-
ing to S then S is called convex. A cut S of a graph G
is a subgraph of G. Let M(S) be the function which
represents the merit of the cut S i.e. the estimation of
the speedup achievable by implementing S as a special
instruction.

The problem that the algorithm proposed by the
authors tries to solve is the following: given the
graphs Gi, the DAGs representing the dataflow of
the basic blocks, find Ninstr cuts Sj which maximize∑

j M(Sj) under three constraints: number of inputs
of Sj ≤ Nin, number of outputs of Sj ≤ Nout and
Sj convex; where Nin and Nout are the number of
register-file read and write ports which can be used by
the special instruction Sj . The property of convexity
is a theoretical constraint which is needed to ensure
the existence of a feasible scheduling which respects
the dependencies of S.
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Fig. 1
A subgraph (a) and its search tree (b)

The authors propose two algorithms, both of them
based on an algorithm for single cut identification
whose extension can be used to find an optimal and
a near-optimal set of nonoverlapping cuts in several
basic blocks. The two algorithms are called Optimal
and Iterative.

The starting point in both cases is a topological sort
on nodes of G: if (u, v) is an edge of G then u appears
after v in the ordering. The algorithm uses a recursive
search function based on this ordering to explore an
abstract search tree. The search tree is a binary tree
of nodes representing possible cuts. Figure 1 shows an
example of subgraph (a) and its search tree (b). There
are 4 nodes in the subgraph and so there 24 possible
cuts represented by the nodes of the tree. Starting
from level 0, the root of the tree, which represents the
empty cut, it is possible to include (1-branch) or not
(0-branch) the first node. Once the node is included or
not in the cut, we can include or not the second node.
Iteratively at every level i it is possible to include the
node having topological order i to the cut represented
by its parent node. The nodes of the search tree that
follow a 0-branch represent the same cut as their par-
ent node, and can be ignored in the search. Taking
constraints into consideration (number of inputs, out-
puts and convexity), it is possible to prune the design
space: if the inclusion of one node violates some con-
straint, the inclusion of a later node in the topological
order cannot overcome the constraint violation and so
it is unnecessary to search other nodes. In the sub-
graph of Figure 1, we said that there are 24 possible
cuts but convexity erases some cuts. For example a
cut S including only node 0, 1 and 3 is not possible

because node 2 is not included thereby violating the
convexity constraint because there is a path from 3 to
0 that includes a node (2) not belonging to S.

Although the complexity of the algorithm is pro-
portional to the number of subgraphs, making it ex-
ponential, the search space is tangibly reduced taking
constraints into account. This algorithm allows to find
the optimal single cut in a single basic block.

The Optimal variant identifies multiple cuts from a
single graph. Let M be the number of cuts to identify
in a single basic block. If M = 1 we have the single-
cut identification algorithm; in this case, at every level
of the search tree there are two branches (2 = M +1).
For M > 1 it’s enough to build a similar tree where
each node branches M + 1 times instead of 2. In this
way nodes of the search tree represent M cuts: n-
branches at level i make the node with index i in the
n-th cut be included.

Iterative as the name says, is an iterative applica-
tion of the single-cut identification algorithm on the
same basic block. Every time a cut is identified this
is collapsed in a single node and excluded from forth-
coming identification steps.

In [2], the graph based approach is combined with
symbolic algebra. The issue is to present a solution
to the problem of clustering operations in the code to
implement as new complex instructions on new func-
tional units of an extensible ASIP processor. This
problem is addressed in two steps. A first step which
identifies possible candidates and a second step of al-
gebraic manipulations to map dataflow sections of the
code to complex instructions available on the proces-
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sor.
To extract possible candidates, the authors imple-

ment two different algorithms: the MaxMISOs extrac-
tor ([5]) and the Optimal algorithm ([1]) analyzed
before. Both of them are used to select MISO, al-
though Optimal is able to find also multiple-output
subgraphs. Once potential instructions are extracted,
they are synthesized in order to estimate their cost
and execution time.

After which starts the second step which exploits
polynomial properties. It requires two different sets
of inputs: a set of polynomials representing the ba-
sic blocks of the application and a set of polynomials
representing the complex dataflow instructions.

The goal of this step is to decompose the polynomial
representation of the basic blocks exploiting the min-
imum number of available instructions. Basic blocks
extracted from the code could be of two types: block
that calculate a polynomial function or blocks which
perform a series of bit manipulation or Boolean func-
tion. In the first case we have directly the polyno-
mial representation of the basic block otherwise using
interpolation-based algorithm ([13]) is possible to ob-
tain the equivalent polynomial representation.

To manipulate the polynomial expressions it is pos-
sible to use specific algebra software packages to solve
polynomial optimization such variable elimination in
a set of polynomials or other problems involving par-
ticular branches of geometry ([4]).

To determine the minimum number of operations
necessary to represent the basic blocks extracted, they
propose an algorithm of decomposition based on a
polynomial representation of available instructions. If
S is a basic block and L is the set of polynomials cor-
responding to the instruction set, the algorithm tries
to simplify S. If the simplification is identical to a
polynomial of L a possible solution is found and the
corresponding tree node is marked accordingly other-
wise the same step is applied recursively. The goal is
to use the minimum number of operations. The algo-
rithm prunes the design space in this way: a bounding
function represented by the number of instructions is
used to calculate the basic block. In other words if
a solution is found which uses only two instructions
it doesn’t look for solutions which use more than two
instructions. Furthermore all the solutions with two
instructions are uncovered and the best one (in terms
of previous analysis) is chosen.

After the Instruction Set has been chosen, the orig-
inal software code is automatically transformed to use
the new instructions assisted by symbolic polynomial

manipulation algorithms. The output is optimized
C code with intrinsic function calls automatically in-
serted.

III. Comparative evaluation

In this section we analyze the strengths and weak-
nesses of the approaches presented in the previous
section and Table II summarizes the main differences.
The algorithms presented show various differences and
now we underline the mains, which could be repre-
sented by: complexity, constraints which the clusters
have to satisfy, the connectivity or not of the sub-
graphs found and if there are limitations on the size
of the graphs that the algorithms analyze.

The strength of MaxMISOs is given by its com-
plexity. In a graph G with n nodes there are 2n sub-
graphs. Theoretically the exploration of the whole
design space looking for subgraphs therefore presents
exponential complexity but in this case, the algorithm
exploits the maximality of the subgraphs which can-
not overlap and when a graph is found its nodes are
removed from the node to analyze. In this way the
complexity is linear with the number of nodes and not
exponential so that the algorithm represents a good
tradeoff between complexity of exploration and effec-
tiveness of the resulting extracted instructions.

There aren’t limitations on the number of input
of the clusters but an interesting feature of this al-
gorithm is that the number of inputs of the graphs
identified is always reasonably small. The experimen-
tal results of the authors show that the MaxMISOs
extracted from various application programs have in
only few cases a number of input that exceeds ten.

As far as the weaknesses are concerned, the ap-
proach is not capable of identifying disconnected
graphs thereby eliminating the possibility of exploit-
ing their parallelism by implementing the graphs as
part of the same instruction. Moreover the maximal
size doesn’t represent optimality under constraints on
the number of inputs given a particular MISO and
so MaxMISO’s definition doesn’t take the number of
input into account.

As far as the second approach is concerned (Optimal
and Iterative), the efficient design exploration is a
strong point. However, in the worst case, the ap-
proach is confronted with an exponential complex-
ity. The authors claim however that in all practical
cases they used for testing, the observed complexity
is within polynomial bounds.
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Algorithm Complexity Number of inputs Number of outputs Disconnected graphs Size

MaxMISO Linear complexity Multiple Single No Not underlined

Optimal
Iterative

Exponential tendency Multiple Multiple Yes Not underlined

TABLE II
Comparison of the algorithms.

The algorithm doesn’t have constraints on the num-
ber of inputs nor on the number of outputs but the
tighter the constraints are, the faster the algorithm
is. Moreover these algorithms are able to identify also
disconnected graphs.

Experimental results show that for a low number
of inputs and outputs, the algorithm performs com-
parable to the approach described in [5]. Once the
number of inputs and outputs is increased substan-
tially, its performance is substantial better than [5].

The approach presented in [2] is an extension of the
algorithms described before. The main characteris-
tic is the use of symbolic algebra to support extrac-
tion techniques that aim to automate the instruction
set selection. In this sense, it is difficult to compare
against the others. Its main strength is its perfor-
mance. Once instructions are selected and optimized,
they are implemented on added functional units which
are pipelined or executed in one cycle. Experimental
results have shown an average improvement of 41% at
the expense of 9.2% increased area.

IV. Conclusions

In this paper we presented some approaches that
address the problem of Instruction-Set extensions. Al-
though there are different methods to deal with this
problem, we have analyzed in more or less details two
approaches. The main approach consists in detect-
ing clusters of operations to collapse on one special
instruction. All of them exploit properties of graphs
and we analyzed the main differences.

We found that all of the algorithms have a series
of limitations in term of number of inputs and out-
puts. Nor is it possible to exploit parallelism as sug-
gested by the presence of disconnected subgraphs. A
final limitation is that the algorithms have exponen-
tial complexity.

Future work will focus on the use of similar tech-
niques in the context of the automatic extraction of
functions that will be executed on reconfigurable pro-
cessors in combination with a general purpose proces-
sor.
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