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ABSTRACT
In this paper we consider a set of multimedia applications
and investigate the potential performance impact a recon-
figurable microcoded processor can provide when added to
a general purpose core processor. In a design space ex-
ploration, considering MPEG2 and JPEG benchmarks, we
investigate performance boundaries, memory bottlenecks
and the influence the core and reconfigurable processor
communication has on performance. Under some realis-
tic scenarios and serial FPGA execution, it is shown that a
53 % cycle reduction is expected when comparing a design
having a core processor and a design when the core pro-
cessor is augmented with a reconfigurable microcoded en-
gine. In addition, we have found that transferring parame-
ters between the core processor and the reconfigurable pro-
cessor may not severely influence the overall performance.
Finally we investigated the memory bandwidth for opera-
tions mapped automatically on FPGA. The case study in-
dicates that small latency DCT hardware design performs
well when interfaced with 512 bytes/cycle. Our studies also
indicate that about 64 bytes/cycle will support high speed
execution for SAD and IDCT.

KEYWORDS
Design space exploration, reconfigurable architecture, mul-
timedia application, Molen programming paradigm

1 Introduction

As reconfigurable architectures (e.g. [1], [2]) come to age
programming, compilation and design space explorations
become increasingly important. Numerous approaches
have been developed, including [3] and [4], to address such
demands. An approach of reference for Reconfigurable
Computing (RC) includes the Molen machine organization
[1] with a prototype implementation on Virtex II Pro [5],
the Molen programming paradigm [6] and a C compiler [7]
that incorporates the frequent programming and architec-
tural Molen reconfigurable features. In [7] it has been re-
ported that the Molen programming paradigm and RC can
substantially reduce the number of instructions executed in
some multimedia applications. In this paper we examine
the potential of the Molen approach in terms of execution
time for the well-known multimedia applications MPEG2

and JPEG encoders and decoders. The multimedia bench-
marks are particularly suitable for the Molen approach as
they usually involve intensive computation for highly reg-
ular operations, intensive I/O or memory accesses and re-
quire real-time processing capabilities. More specifically,
we perform a design space exploration study and quantita-
tively analyze:

• performance boundaries: we first determine the
maximal performance gains for each operation im-
plemented on the reconfigurable hardware. We also
compute for each operation the latency range of the
valid hardware designs whose execution on the recon-
figurable hardware is faster then the pure software ex-
ecution. Consequently we show that for real operation
implementations the MPEG2 encoder executed on the
Molen processor achieves a 53 % reduction of cycles
of total execution time.

• parameter exchange: we investigate the effects on
performance of the parameter passing between the
general purpose processor (GPP) and reconfigurable
hardware and we show that the overhead is negligible.

• memory bottlenecks: we examine the effect of the
data communication between the reconfigurable hard-
ware and memory on performance and show that for
DCT a high IO bandwidth (512 bytes/cycle) is re-
quired when a fast execution time of around 20-30
cycles is imposed. For SAD and IDCT, the data com-
munication bandwidth is not a constraint.

On the basis of our design space exploration, the hard-
ware designer can compute in advance for each hardware
implementation the global performance improvement and
the influence of memory or parameter passing latencies on
the overall performance. For example, when a specific
speed-up is imposed, the designer is aided to choose the
operations that can achieve the required speed-up and the
IO bandwidth that eliminates the bottlenecks in the system.

The existing literature for multimedia applications an-
alyzes the achieved improvement when only one opera-
tion is implemented in reconfigurable hardware (IDCT in
MPEG decoder is presented [8]) or presents the profile in-
formation for a set of operations, but relying on a small
number of test sequences (two sequences in [9]), which is



Figure 1. The Molen machine organization

insufficient because it is generally known that the behavior
of specific operations (such as VLC) is highly dependent
on the characteristics of the input data. In [10] it is pre-
sented an analysis of the overall characteristics of the mul-
timedia applications, such as operation frequencies, basic
block and branch statistics. Our approach is different as
we analyze four multimedia applications for a large set of
representative input data and we focus on the study of a set
of specific operations in the context of the overall applica-
tion. Moreover, we provide and analyze profiling informa-
tion which are specifically relevant for the Molen proces-
sor, such as the execution time, hardware configuration and
communication overhead between the processor, reconfig-
urable hardware and memory.

The discussion of the paper is organized as follows. In
Section 2 the Molen programming paradigm and compiler
are briefly introduced. In the following section we present
the results of a multimedia case study where a number of
computation-intensive operations from a set of multimedia
benchmarks using a large number of input data are ana-
lyzed. Finally, conclusions and future work are drawn in
Section 4.

2 Background

As in the design space exploration presented in the next
section the Molen approach is assumed, we provide a brief
introduction of the Molen machine organization ([1]), the
Molen programming paradigm ([6]) and the compilation
tools [7].

Molen Machine Organization: The main Molen
components as depicted in Figure 1 are: the Core Proces-
sor - which is a GPP, and the Reconfigurable Processor -
implemented in the FPGA. The Arbiter performs a partial
decoding of the instructions fetched from main memory
and issues them to the GPP or the reconfigurable processor.
The division in hardware and software part is directly map-

Name # frames Resolution

carphone 96 176x144
claire 168 360x288

container 300 352x288
football 125 352x240
foreman 300 352x288
garden 115 352x240
mobile 140 352x240

standard 3 128x128
tennis 112 352x240

Table 1. MPEG test sequences in YUV format

pable to the two processors. The hardware targeted pieces
are executed by the FPGA, while the (remaining) software
modules are executed on the GPP.

The Molen Programming Paradigm The Molen
programming paradigm [6] is a sequential consistency
paradigm for programming Field-programmable Custom
Computing Machines (FCCMs). For any given instruction
set architecture an one-time architectural extension of few
instructions is sufficient to provide a large user reconfig-
urable operation space. The minimal extension comprises
4 instructions (for the minimal πISA as defined in [6]):
two instructions (set/execute) for loading a hardware im-
plementation and launching its execution on the reconfig-
urable hardware and two instructions (movtx/movfx) for
the communication between the reconfigurable hardware
and GPP.

Compilation Tools: The compiler [7] relies on the
Stanford SUIF2 (Stanford University Intermediate Format)
and the Harvard Machine SUIF back-end framework. The
x86 back-end already available in Machine SUIF was ex-
tended to generate code for the Molen FCCM with an x86
processor as GPP. The compiler automatically maps the ap-
plication on the target FCCM based on pragma annotations.
It is also used to generate additional code that gathers pro-
file information for the compiled application at the execu-
tion time.

3 The MPEG2 and JPEG Case Study

In this section we explore the hardware constraints for
implementing on an FPGA a set of well-known time-
consuming multimedia operations. The main goal is to de-
termine the parameters that have a substantial impact on the
system performance and their range of values in order for
the Molen processor to outperform the standalone GPP.

Target Architecture and Applications As explained
before, we consider a Molen machine organization with an
x86 as the Core Processor. More specifically, the compiler
generates code for the x86 architecture while the measure-
ments are performed on an AMD Athlon XP 1900+ at 1600
MHz. The considered applications are a set of multimedia
benchmarks consisting of the Berkeley MPEG2 encoder
and decoder and the SPEC95 JPEG encoder and decoder.



Name Resolution

boat.ppm 512x512
clegg.ppm 814x880

frymire.ppm 1118x1105
lena.ppm 512x512

mandrill.ppm 507x509
monarch.ppm 768x512
peppers.ppm 512x512

sail.ppm 768x512
serrano.ppm 629x794
tulips.ppm 768x512

penguin.ppm 1024x739
specmun.ppm 1024x768

vigo.ppm 1024x768

Table 2. JPEG test images

The time-consuming operations candidate for hardware ex-
ecution are SAD (sum of absolute-difference), 2D DCT
(2 dimensional discrete cosine transform), IDCT (inverse
DCT), VLC (variable length coding) and VLD (variable
length decoding). The input data are representative series
of test images and scenes of various sizes, presented in Ta-
bles 1 and 2.

In this paper we assume that the GPP and FPGA do
not run concurrently and that the execution of an opera-
tion on the FPGA is each time preceded by the FPGA con-
figuration (even if the previous configuration is the same).
Moreover, we assume that the FPGA performs only one
operation at the same time. In order to evaluate the perfor-
mance of the Molen processor for one application where
function f is executed on the FPGA, we compute the num-
ber of GPP cycles for the Molen processor using:

nMolen ' nX86 − nf + ncall · cost (1)

cost = xSET + yEXEC + npar ∗ zMOV XR + c

where

• nMolen: the total number of GPP cycles spent in the
considered application by the Molen processor;

• nX86: the total number of GPP cycles when the
considered application is executed exclusively on the
GPP;

• nf : the total number of GPP cycles spent in all execu-
tions of function f on the GPP;

• ncall: the number of calls to function f in the consid-
ered application;

• cost: the number of GPP cycles for one execution of
function f on FPGA; the time for FPGA configuration
and execution is converted in GPP cycles.

• xSET : the number of GPP cycles required for one
configuration of the FPGA for function f ;

• yEXEC : the number of GPP cycles required for one
execution on the FPGA of function f ; it may depend
on the input data. In order to be constant for the cho-
sen set of input data we consider the largest values;

• npar: the number of instructions for sending the pa-
rameters from GPR to XR and returning the results;

• zMOV XR: the number of GPP cycles for one
MOV XR instruction (movtx or movfx)

• c: quantifies the the calling convention differences in
number of GPP cycles. As c is small ( < 10 cycles)
for the considered applications, we neglect it.

In our design space exploration, we first analyze the
pure software execution and extract the relevant profile in-
formation for the considered applications and functions.
Based on the profile information and Formula 1, we exam-
ine the performance and the hardware parameters for the
target Molen FCCM. The profile information is extracted
using Halt Library [11] for code instrumentation. Addi-
tionally, we develop a set of analysis routines to measure
the number of cycles executed in a specific function (us-
ing RDTSC - Read Time Stamp Counter instruction) and
the number of function calls. More specifically, we have
measured the values for nX86, nf and ncall included in
Formula 1. In order to minimize the impact of extern fac-
tors on the measurements, we run the applications in single
mode and with the highest priority in Linux.

As illustrated in Formula 1, the cost per function
call for a reconfigurable execution is determined by the
cost of the FPGA configuration (xSET ), FPGA execution
(yEXEC) and transfer of parameters (zMOV XR). The in-
fluence of these factors on the overall performance and
their optimal ranges are explored in the rest of this section.

JPEG encoder JPEG decoder
Input VLC DCT IDCT VLD
boat 2272 2746 2905 7322
clegg 3631 2748 3701 13950

frymire 3371 2758 3313 12989
lena 2469 2759 3461 8080

mandrill 3463 2759 3686 12967
monarch 2403 2758 3360 7836
penguin 2488 2762 3453 8014
peppers 2505 2764 3463 8369

sail 3110 2758 3545 11276
serrano 2955 2766 3698 10753

specmun 2375 2776 3389 7389
tulips 2882 2760 3571 10177
vigo 2550 2755 3424 8444

Table 4. Software cost (bold) expressed in GPP cycles for
the functions included in JPEG application

Cost Range The purpose of the GPP extension with
reconfigurable hardware is to achieve a performance im-
provement over the GPP alone, meaning nMolen < nX86



MPEG encoder MPEG decoder
Input SAD DCT IDCT VLC I VLC II IDCT VLD I VLD II

carphone 997 37796 2612 2631 2196 2513 1763 1347
claire 1092 37595 2177 1710 1524 2056 745 659

container 1008 37590 2208 1842 1476 2087 880 586
football 1484 37537 2827 2795 2318 2678 1940 1499
foreman 1298 37572 2193 1577 1494 2071 568 606
garden 1311 37594 2463 2046 1524 2332 1091 662
mobile 1092 37536 2519 2123 1564 2398 1177 722

standard 1199 37549 3423 2930 2239 3295 - -
tennis 1344 37531 2221 1702 1578 2099 718 713

Table 3. Software cost (bold) expressed in GPP cycles for the functions included in MPEG2 application
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Figure 2. Relative performance boundaries and a real im-
plementation analysis

which holds when

cost < nf/ncall. (2)

The values for limit cost (nf/ncall) in Formula 2 are pre-
sented in Tables 3 and 4. They represent the cut-off points
for the hardware execution from where an implementation
provides a performance improvement. We refer to the mini-
mal values of each operation as the software cost (presented
in bold in Tables 3 and 4). For an implementation that ex-
ecutes the operation in a number of cycles less than the
software cost, a performance improvement is guaranteed to
hold for all input data in the study.

Performance boundaries For each operation, we de-
termine the number of cycles it consumes in the pure soft-
ware approach from the overall application (nf/nX86) as
presented in Table 5 (second column). These values repre-
sent the maximal improvements of the overall performance
that can be achieved by hardware acceleration of the con-
sidered functions. We notice that implementing the SAD
function on the FPGA can improve the overall performance
up to 38 % while the overall improvement for VLC is very
low (0.2 %). When taking into account all the functions

for MPEG2 encoder (Fig. 2), the maximal reduction of the
number of cycles is 65 % compared to the pure software
implementation.

We are also interested in determining the boundaries
between which any real implementation should be situ-
ated. The upper boundary is when there is no improve-
ment, meaning nMolen = nX86 and the lower (theoretical)
boundary corresponds to an infinite hardware acceleration
(cost = 0) of each function. These boundaries are presented
in Fig. 2 and they limit the design space where a hardware
designer should place a particular implementation. When
all operations are designed to execute at the software cost,
then an overall performance improvement is still guaran-
teed (6 % in Fig. 2). This improvement is due to the safe
choice of minimal value for the software cost in order to
guarantee no performance decreasing even for the worst
case input data.

For the real, non-optimized FPGA implementations
described in [1], we also plotted in Fig. 2 the performance
for the same operations assuming that compiler optimiza-
tions hide the configuration latency (xSET = 0). After
converting the reported number of cycles to our target pro-
cessor, we obtain 53% performance improvement.

Parameter Passing Impact In order to understand
the impact of the Molen parameter passing mechanism,
we assume a scenario in which the cost from Formula 1
is exclusively spent for passing parameters (cost = npar ∗
zMOV XR and xSET = yEXEC = 0). Under this theoreti-
cal assumption we compute the maximal number of cycles
for zMOV XR as zMOV XR = software cost/npar given
in Table 5 (last column). In order to interpret the results,
it is important to realize that MOV XR instructions resem-
ble the move general purpose register instructions which
usually require a small number (∼ 3) of cycles. Our com-
putations show that for the SAD function, a MOV XR in-
struction can be executed in up to 166 cycles before the
maximal performance (38 % in Table 5, second column) is
consumed. In the case of DCT, the MOV XR can take up to
37531 cycles before the penalty is higher than the maximal
performance gain of 25.4 %.

In order to analyze the communication overhead be-
tween GPP and FPGA, we assumed an exaggerated sce-



Function MAX Improv MOV XR max

MPEG2 encoder
SAD 38.0 % 166
DCT 25.4 % 37531
IDCT 1.6 % 2177
VLC I 0.2 % 225
VLC II 0.1 % 369

MPEG2 decoder
IDCT 38.3 % 2056
VLD I 3.1 % 284
VLD II 2.0 % 586

JPEG encoder
VLC 14.7 % 568
DCT 14.0 % 2746

JPEG decoder
IDCT 49.5 % 581
VLD 24.3 % 732

Table 5. Marginal improvement for each function and the
maximal cost for MOV XR (cycles)
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Figure 3. zMOV XR impact when passing parameters re-
quires software cost/2

nario in which the cost for hardware configuration and exe-
cution is half of the software cost. The impact of zMOV XR

is presented in Fig. 3 showing that the MPEG2 encoder is
the only application whose performance may be negatively
influenced by zMOV XR. This is explained by the low soft-
ware cost for SAD (compared to DCT, Table 3 ) and the
large number (8) of parameters. In conclusion, we con-
sider that for the operations under considerations, transfer-
ring parameters and returning the results is not a bottleneck
in the system.

Communication FPGA - Memory Finally, we inves-
tigate the FPGA-memory data communication bandwidth
as some parameters passed to the FPGA in XRs are point-
ers to blocks of data placed in external memory. In this
context, we assume that access to memory is sequential and
symmetrical (number of cycles to read and write one block
of data are equal). In order to determine the amount of data
transferred to/from external memory, we introduce a spe-
cial pass in the compiler to annotate each basic block of
the considered functions with the number of read and write
memory instructions, as well as the corresponding number
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Figure 4. Execution time for different bandwidth

of bytes. Stack operations are not considered as read/write
(R/W) operations, as the FPGA implementation most prob-
ably will not use a stack. In Table 6, we present the num-
ber of read and write memory operations together with the
corresponding number of bytes (R B and W B). In column
R W B, the total number of read and written bytes (R B +
W B) is given.

When we assume automatic transformation and
FPGA mapping performed by tools such as Compaan [12],
that preserve the memory accesses performed in software,
we can analyze the memory bandwidth. As far as the re-
sults for DCT are concerned, our calculations are done us-
ing the Berkeley implementation of the MPEG2 encoder
benchmark including forward DCT-double precision. Fig-
ure 4 shows the computed bandwidth requirements for dif-
ferent execution times. Our calculations indicate that DCT
is the most demanding function. The reasons of this high
bandwidth requirement are: (i) the use of doubles (8 bytes)
to minimize information loss during compression, (ii) tem-
porary results are also stored in memory and (iii) the pa-
rameters are each time read from memory. If a fast DCT
design of around 20-30 cycles is required then around 512
bytes need to be transferred per cycle to fully utilize the
DCT unit. Fast SAD and IDCT implementations are less
demanding as far as IO is concerned. If SAD is going to be
implemented in around 5 cycles, as described in [13], then
a bandwidth of 47 bytes per cycle is enough to have a per-
formance gain of 37 % (which is close to the maximal 38 %
improvement). When a bandwidth of 128 bytes per cycle
is assumed, then a SAD operation can be performed with-
out starvation even in 2 cycles. Similar conclusions can be
drawn for IDCT. We finally also computed the bandwidth
requirements taking into account the weighted execution
times for each function. This curve reflects the require-
ments of a possible real implementation and suggests that
a fast execution time of around 50 cycles for all operations
requires a bandwidth of 83 bytes per cycle.

We emphasize that the presented results are based on
the assumption that yEXEC is constant (requiring the max-
imal possible delay) for a specific function, even though
it can vary according to the specific input data (e.g. for



Function Read R B Write W B R W B

MPEG2 encoder
SAD 235 235 0 0 235
DCT 2112 13824 192 1152 14976
IDCT 254 636 128 256 892
VLC I 129 197 1 4 201
VLC II 128 192 0 0 192

MPEG2 decoder
IDCT 254 636 128 256 892
VLD I 288 962 72 270 1232
VLD II 225 749 55 207 956

JPEG encoder
VLC 184 547 118 472 1019
DCT 256 1024 128 512 1536

JPEG decoder
IDCT 344 995 128 320 1315
VLD 1849 6752 539 1926 8678

Table 6. Number of loads/stores performed in the pure soft-
ware approach

VLD function). Therefore, the actual performance im-
provements may be higher that presented in this paper.

4 Conclusions

In this paper we presented the design space exploration for
some well-known computation-intensive multimedia func-
tions that could be implemented on reconfigurable hard-
ware. The design space exploration allows hardware de-
signers to assess the hardware constraints for the consid-
ered functions such as performance boundaries, maximal
hardware execution latency, system bottlenecks and IO
bandwidth. To this purpose, we have determined for each
FPGA implementable operation the maximal cost in or-
der to guarantee a minimal improvement. We also deter-
mined the boundaries of these performance improvements
and found that for the real implementations described in [1]
a 53% reduction of the number of cycles is the expected
performance improvement for the MPEG2 encoder. More-
over, our calculations also pointed out that transferring pa-
rameters between XRs and GPP registers is not to be a bot-
tleneck. Our calculations suggest that the FPGA-memory
data communication can be a bottleneck and access of large
blocks (up to 128 bytes) might be a solution to this prob-
lem.

Further research will focus on the compiler optimiza-
tion to hide the FPGA configuration latency and to exploit
the parallel operation executions on FPGA.
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