
USB enabled PDP8 computer
Johan van de Pol, Martin Mul, Georgi Gaydadjiev and Stamatis Vassiliadis

Computer Engineering Laboratory,
Electrical Engineering, Mathematics and Computer Science Department,

Delft University of Technology,
Delft, The Netherlands

{jvandepol, mpmul, georgi}@Dutepp0.ET.TUDelft.NL
http://ce.et.tudelft.nl

Abstract—The PDP-8 family of minicomputers was built
by Digital Equipment Corporation between 1965 and 1990.
The PDP8 computers were one of the first computers that
were affordable by a broader range of customers; that con-
tributed in the success of these machines. In 1976, Intersil
developed a PDP8 chipset consisting of the IM6100 proces-
sor [4], the I/O extension (IM6101) and the UART (IM6402).
The PDP8 utilizes a small instruction set. Only eight basic
instructions are implemented, which provide enough func-
tionality to compose complete programs. Since there are
many PDP8 legacy programs available on paper and mag-
netic tapes and not that many operational PDP8 machines
left, the PDP8 project was initiated. The Intersil chipset is
used together with a 80C32 microcomputer in a single board
device. The PDP8 device enables the usage of a real PDP8
computer as in the days around 1970, including native I/O
connectivity. In addition, the PDP8 device is controlled by a
host computer. Original PDP8 peripherals such as teleprint-
ers and magnetic tape readers can be connected to the PDP8
device. In this way original PDP8 programs stored on pa-
per or magnetic tapes can be loaded and executed into the
PDP8 device. The 80C32 has control over the memory and
the system state of the PDP8 processor. The 80C32 com-
municates with the host computer via USB connection. The
USB connection is implemented by the PDIUSB12 controller
from Philips. The whole PDP8 device is under control of a
dedicated application running on a Microsoft Windows host
computer. A command/response interface between the host
and the PDP8 device was developed for this purpose and im-
plemented. This article describes the development process
and the design of the PDP8 device hardware, the device soft-
ware and the host software.

I. I NTRODUCTION

The PDP8 family of microcomputers were built by Dig-
ital Equipment Corporation. These computers have a his-
torical value, because they were the first computers that
were affordable by a broader range of customers. The
PDP8 processors were quite special because of their small
instruction set: only eight basic instructions were sup-
ported. These eight basic instructions are sufficient to pro-
vide enough functionality to compose complete applica-

tions. Due to its historical value and the fact that most
of the PDP8 computers are no longer operational, a PDP8
computer that can be controlled from a host computer is
designed and created. In particular, the host computer can
control and manipulate the memory and the state of the
PDP8 computer. This article describes the design of this
system.

The main contributions of the work described hereafter
are: 1) The specification and the design of the PDP8 de-
vice hardware. 2) The definition and the development of
the software for both the PDP8 device and the host com-
puter. 3) The set up and implementation of dedicated com-
mand/responce communication protocol for data exchange
between PDP8 device and the host.

This article is arranged as follows. A small historical
overview of the PDP8 machine is given in Section II. Next,
the system specifications are presented in Section III. The
PDP8 hardware device is described in Section IV and Sec-
tion V will describe the software for the host application
controlling the PDP8 device and the device software. Fi-
nally, in Section VI a summary of this article is given.

II. PDP HISTORY

In 1957, Ken Olson and Harlan Anderson founded
Digital Equipment Corporation (DEC), capitalized at
$100.000, and 70 percent owned by American Research
and Development Corporation [7]. They wanted to call
their company Digital Computer Corporation, but the ven-
ture capitalists insisted that they avoid the term Computer
and hold off on building computers, because of the stereo-
type that computers were big and expensive, needing a
computer center and a large staff.

DEC’s first computer, the PDP1 had a price label of
only $120.000 at a time when other computers sold for
over $1.000.000. In addition, DEC quoted prices as low as
$85.000 for minimal models. The term computer was also
avoided by using the term Programmable Data Processor
or PDP for their products. For over a decade, all digital
computers sold by DEC were called PDP’s.

112

The PDP8 family of minicomputers was built by Digi-
tal Equipment Corporation between 1965 and 1990. The
PDP8 was largely upward compatible with the PDP5, a
machine that was unveiled in 1963. All of these machines
were characterized by a 12 bit word, typically 4K words of
memory, and simple but powerful instruction sets.

By late 1973, the PDP8 family was the best selling com-
puter in the world. Most models of the PDP8 set new
records as the least expensive computer on the market at
the time of their introduction. The PDP8 has been de-
scribed as the model-T of the computer industry because it
was the first computer to be mass produced at a cost that
just about anyone could afford.

In 1976 Intersil, offered the first PDP8 processor to oc-
cupy a single chip using CMOS technology: the IM6100.
DEC verified that it was a PDP8 and began to apply it to
its products in the fall of 1976 [4].

III. PDP8 DEVICE SPECIFICATIONS

Before starting with prototyping a system (hard-
ware/software), a clear specification of the system is re-
quired. This specification is needed to be able to check the
design at the end of the whole design process. This section
describes the specification of the PDP8 device hardware
and the host and PDP8 device software.

The project requirements where as follows: 1) The
PDP8 device in this project will be a small device, in con-
trast to the early days, where the PDP8 computers were
reasonable big machines. In addition it should be easy to
install and set up. 2) The PDP8 device should be controlled
by a host computer. This means that the host computer
should be able to read and write the entire PDP8 memory
and should be able to start, stop, step and reset the PDP8
processor. 3) Legacy I/O devices, such as teletype printers
and tape readers, should be able to communicate with the
PDP8 device. 4) There should be reasonable communica-
tion speed. Transferring the complete memory content of
the PDP8 to (or from) the host computer should not take
more than 500 ms. These requirements will be translated
in hardware and software specifications here after.

A. Hardware specifications

The PDP8 device should be a small device and connect-
ing the device to a host computer is envisioned to be easy.
In this way the PDP8 device will be usable with a range of
different computers. The PDP8 device should at least con-
tain the following components: PDP8 processor, Memory
for the PDP8, I/O extension and an interface to communi-
cate with the host.

Considering the connection between the host computer
and the PDP8 device to transfer data the following options

were considered: 1) PCI bus; 2) Parallel connection; 3)
Serial connection; 4) USB connection. Because the de-
vice should be easy to install, the first option is abandoned
quickly. Installing a PCI card takes a significant time com-
pared with inserting a connector. The options left are all
options where a cable is used. Almost every modern com-
puter has one or more USB ports. Considering that not all
computers have a free serial or parallel port any longer and
that USB is faster than a serial or parallel connection, an
USB [9] connection is chosen.

B. Software specifications

The design specification gives a list of items the final
system should comply to. This list of specifications is sum-
marized hereafter. The host and the device software must
be able to: 1) Start the PDP8 processor. 2) Stop the PDP8
processor. 3) Step the PDP8 processor. 4) Reset the PDP8
processor. 5) Set the switch register of the PDP8 com-
puter. 6) Read the value of the switch register and display
this value. 7) Read status information of the PDP8 pro-
cessor. 8) Write data to a specified location of the PDP8
RAM. 9) Read data from a specified location of the PDP8
RAM. The read data must be displayed in an appropriate
way. 10) Store data from the pdp8 RAM in a binary file.
This file must be in a common format. 11) Load a binary
file in a common format into the RAM of the PDP8 pro-
cessor. 12) Provide an editor to edit PAL assembly files.
13) Be able to load a PAL file into the editor. 14) Be able
to save the editor text into a pal file. 15) Be able to com-
pile the text in the editor and show the error messages of
the compiler. 16) Be able to write the binary output of
the compiler to the RAM of the PDP8 processor. In addi-
tion to the support of the above issues the device software
should be able to: 1) Configure the 80C32. 2) Setup the
PDIUSB12. 3) Initialize the PDP8 sub-system. 4) Handle
reception of incoming USB packets from the host: A) han-
dle reception of predefined packets (these packets will be
introduced in Section V); and B) handle reception of any
undefined packets (error handling).

IV. PDP8HARDWARE DEVICE

The main part of the PDP8 hardware device is the PDP8
computer [6]. To provide control over this computer, the
device is connected to a host computer using an USB in-
terface as required by the specifications. A microcomputer
system, using a 80C32 processor, takes care of the inter-
face between the host and the PDP8 computer. The RAM
of the PDP8 must also be available for the 80C32 proces-
sor, but the 80C32 and the PDP8 processor both run in-
dependent of each other. They don’t share a data and ad-
dress bus, which means that some kind of multiplexer for

113

Fig. 1. PDP8 device hardware overview

switching the RAM is needed. The hardware design is split
into three parts: the USB part, the shared RAM part and
the PDP8 part. An overview of the hardware as planned is
given in Figure 1. The remaining of this section describes
these three parts.

A. PDP8 part

The PDP8 system must be a complete basic system of a
PDP8 machine as it was used in earlier times. This means
that the system has to contain at least the following compo-
nents: PDP8 Processor, 4k words memory space, Parallel
Interface Element (PIE) and UART.

The switch register that these machines contained needs
also to be implemented and the PDP8 computer should
function as it did in the past to have compatibility. The
switch register is a register that was build out of twelve
switches, which were used to set the value of this particu-
lar register.

The PDP8 is a 12-bit processor. Both the data bus and
the address bus are 12-bit. Memory modules with this size
are not widely available if they exist at all. Therefore, two
8kx8 memory modules are used to create a memory space
of 8kx16. The PDP8 however can only address 4kx12 of
this memory. Section IV-C contains more details about the
memory of the PDP8.

B. USB part

The 80C32 processor is a ROM-less device containing:
• 256 x 8 RAM;
• 32 general purpose I/O lines;
• three 16-bit counter/timers;
• six-source, four-priority level nested interrupt structure.

The 64k of memory addresses available are divided be-
tween the following components:
• 32k x 8 EEPROM for the 80C32: In the EEPROM the
device software is stored. Section V-B will present the de-

Fig. 2. The distribution of the available memory space

vice software. This will be the largest amount of data, so
the bottom half of the available space is allocated to the
EEPROM as shown in Figure 2.
• RAM for the 80C32: The external RAM for 80C32 oc-
cupies the memory space from 32k to 40k, as shown in
figure 2.
• RAM for the PDP8: Two 8k x 8 bit RAM devices are
used. Section IV-C will describe the memory of the PDP8
in more detail. As shown in Figure 2, the first RAM
(RAM1) is in the memory space from 48k-56k and the sec-
ond RAM (RAM2) from 56k-64k.
• PDIUSB12: Two location are needed for the PDIUSB12.
One is needed to write command instructions and another
is needed to read and write data. As shown in Figure 2, the
PDIUSB12 takes two memory addresses in the memory
space between 40k and 48k.

In Figure 3 the timing of the 80C32, IM6100, RAM and
PDIUSB12 is shown. The timing of the ROM is equal to
the timing of the read part of the RAM. The 8 least sig-
nificant bits of the address output of 80C32 are latched on
the negative edge ofALE. The address bus of IM6100 is
latched on the negative edge ofLXMAR. The address will
be available until the end of the read or write cycle. The
control signals for the memory devices of the 80C32 are:
chip enablefor the ROM, RAM and PDIUSB12 is created
by external logic from the address bus,write enablefor the
RAM and PDIUSB12 is theWriteoutput of the 80C32 and
output enableof the ROM, RAM and PDIUSB12 is the
output of the AND port with the inputsPSENandReadof
the 80C32. The control signals for the RAM of the PDP8
are: chip enablefor the RAM is theMEMSELoutput of
the IM6100,output enableis the inverse of theXTAoutput
andwrite enableis theXTCoutput.

114

Fig. 3. Timing diagram

Timer 2 of the 80C32 is used as an oscillator. The output
of this oscillator is connected to I/O pin 1.0. This pin is
connected to the clock input of the UART of the PDP8
(IM6402). The baudrate of the UART should be equal to
110 bps. This is the baudrate used in communication with
external devices, such as teleprinters and tape readers. The
baudrate of the IM6402 is 1/16 of the clock input, therefore
the clock input should be 1,76 kHz.

The USB connection is implemented by the PDIUSB12
controller from Philips [8]. The PDIUSB12 uses the
full speed (12 Mbits/s) mode of USB version 1.1. The
PDIUSB12 takes two addresses from the memory space
of the 80C32. One address for data and one for com-
mands. Three endpoints are supplied by the PDIUSB12.
Endpoints can be described as sources and sinks of data.
Because a device can have more then one endpoint, sev-
eral data channels can be set up between a device and host.
The PDP8 device uses two endpoints, one for communi-
cating with the driver in Microsoft Windows XP and one
to communicate with the host software. A USB driver is
needed at the host to communicate with an USB device.
In Microsoft Windows XP, several USB class drivers ex-
ist. Writing a device driver takes a lot of time in compari-
son with creating a few descriptors [5], that are needed for
a standard driver. Descriptors describe the device for the
host. The descriptors give information such as the USB
version used, number of endpoints and type of endpoints.

The PDP8 device uses the Human Interface Device (HID)
class. A HID transfers data in reports. Reports are prede-
fined data blocks with controllable size.

The PDIUSB12 has a programmable clock out pin, the
clock output on this pin can have a frequency between
4MHz and 48MHz. The frequency depends on the value
written after aset modecommand from the 80C32. The
clock output is connected to the clock input of the 80C32.
The maximal operational frequency of the 80C32 used, is
16 MHz. This frequency is used as the clock output fre-
quency.

C. Shared RAM part

The RAM on the board has to be available for both the
C32 and PDP8 processor. For the C32, this RAM is just
some RAM in the memory space; the C32 does not need
this RAM for its normal operation. For the PDP8 how-
ever, this RAM is the main memory and it also replaces
the ROM normally found in these computers. The PDP8
and the C32 both have to access the RAM, but a few dif-
ferences exist between these processors. These differences
consist of different data and address bus width and a small
difference in timing.

The PDP8 is capable of addressing 4k words of memory,
because the processor has only 12 address lines. The data
bus of the PDP8 is 12 bits wide and RAM chips with this
format are not available. This means that several RAM
chips must be used to build the RAM for the PDP8. Chips
containing 4k words are not widely available, so two chips
with 8k bytes are used. This gives a memory of 8k x 16
bit. The 13th address bit of the RAM chips is controlled
by the C32. Therefore the C32 can let the PDP8 operate
on the top or bottom half of the memory.

Because both processors must have access to the same
RAM, some logic is needed for these chips. Only one
processor can have access to the RAM at the same time,
which processor has control over the RAM is controlled
by the C32 processor. The RAM switch that has to be
designed must switch between the data bus, address bus
and all timing and other signals that control the RAM.
To select different inputs, a simple multiplexer is needed.
For the data lines a simple multiplexer will not be suffi-
cient, because data flows in both directions. Therefore
some transmission gates are used for switching the data
lines of the RAM. These transmission gates are tri-stated,
which means that, when not enabled, the connected lines
will be high-impedance and not be tight low or high. This
is important, because otherwise the data bus is disturbed
and wouldn’t function. The C32 and PDP8 processor both
have an own set of timing signals. The only difference
between those sets is that the C32 computer provides two

115

chip select signals for the two RAM chips and the PDP8
one, because the PDP8 will always select both RAM chips
at the same time. Together with the read and write sig-
nal, this gives four signals per processor. These two sets
of signals are fed into a multiplexer. One of these sets is
selected by the switching signal, which is also used by the
enabling and disabling of the transmission gates. Also the
12 address bits are fed into multiplexers and the switching
signal selects one of the addresses.

V. SOFTWARE

A. Host software

The host software provides the user control over the
PDP8 processor and its memory. Therefore the host soft-
ware has to communicate with the software in the embed-
ded system. This is realized by an USB connection. The
USB protocol is incorporated into the operating system
Microsoft Windows [3], which means that the host soft-
ware uses USB functions included in the operating system
and no additional drivers need to be designed. The stan-
dard USB drivers for a Human Interface Device (HID) are
used. The Host software is written in C++ using Borland
C++ Builder [2], because this package provides an easy
way of creating graphical user interfaces using standard
widgets. The host software also provides some extra con-
trols to edit and cross compile PAL assembly files. The
binary output of the compiler can be uploaded to the mem-
ory of the PDP8 computer.

B. Device software

The device software takes care of the configuration of
the 80C32, PDP8 and the PDIUSB12 and handles the in-
coming packages on the PDIUSB12. Before the host pro-
gram can send data packets to the device, an USB con-
nection has to be established. When a USB plug is con-
nected to a computer running Microsoft Windows, Mi-
crosoft Windows will try to enumerate the device. Enu-
meration is the process of determining what device has
just been connected to the bus and what parameters it re-
quires such as power consumption, number and type of
endpoint(s), class of product etc. The host will then assign
the device an address and enable a configuration allowing
the device to transfer data on the bus. After the enumer-
ation is completed, the host software can read and write
packets of data from and to the device.

C. Commands from and to the host software

The commands for the communication between the host
software and the PDP8 device were additionally created.
These commands enter the PDP8 device in endpointtwo

out. The host and device communicate with each other
by using reports with a length of 64 bytes. If bigger re-
ports are used, they will be send in separate packages. The
first byte of the messages is a message header. A message
header is a single byte, enabling 255 different messages.
The following 63 bytes depend on the message header.
Most of the time the bytes will contain first some argu-
ments and then some data. In more detail the messages are
as follows:

• Read RAM: This message contains a start address and
length. The start address is the address of the first byte that
should be send to the host. The length is the total amount
of data that should be send. The reply on this message is
the content of the requested part of the RAM. After send-
ing the requested RAM content is completed, a CRC is
calculated over the data and send to the host with theCRC
after readcommand. The host will calculate the CRC over
the data of the RAM part and compare it with the CRC that
is received. In case the two CRC’s are different, the same
part of the RAM will be requested again. The CRC that is
used is the CRC-16 with the polynomialx16+x15+x2+1.
• Write RAM: This message contains a start address and
a number of 12 bit data words that will be send in this
message.
• CRC of data: A data write is always followed by a CRC
check to verify if the data is written correctly. This CRC
check contains the start address, length and the CRC of the
data that the host calculated. This is send back extended
with the CRC that is calculated by the 80C32 with the CRC
after write message.
• Write switch register: This messages contains 12 bits
data that has to be written into the switch register.
• Read switch register: The switch register can not directly
be read by the 80C32. Therefore a copy is maintained in
the RAM of the 80C32. The only way to change the value
of the switch register is by a write switch register com-
mand. When there is a write switch register command, the
value is updated in the RAM.
• Start PDP8: This message will start the PDP8 processor
if the processor is stopped. This is done with a pulse on
the run/hlt input of the IM6100. If the processor already
runs, no action is taken.
• Stop PDP8: This message will stop the PDP8 processor
if the processor is running. This is done with a pulse on
the run/hlt input of the IM6100. The processor will fin-
ish the instruction it was executing and increase the pro-
gram counter, before it stops. If the processor was already
stopped, no action is taken.
• Reset PDP8: This message will initiate a reset for the
PDP8 chips. A pulse similar to the power-on reset will be
given to the reset inputs.

116

• Step PDP8: This message let the PDP8 execute one in-
struction if the PDP8 processor was stopped. This is done
by a pulse on the run/hlt input of the IM6100, followed by
another pulse on this pin. If the PDP8 processor runs when
this command is received, no action is taken.
• Read PDP8 status: When this command is received at
the PDP8 device the PDP8 device should send a message
back with the content of PDP8 registers and indication bits.
These are the MQ register, accumulator, link bit, program
counter and content of the memory at the position of the
program counter. To load the values of the registers and
indication bits a special program has to be transferred to
the PDP8 RAM. Therefore the original PDP8 program has
to be stopped and the 13th address bit should be switched
to one. Now the bottom half of the RAM can be written.
When the bottom half of the PDP8 RAM is not used, the
program can be stored there. When the bottom half is used,
the status command can not be used, otherwise it will over-
write the original program. There are PDP8 instructions to
load the content of the MQ register, accumulator and link
bit. An instruction to load the program counter is not pro-
vided. After the original program is stopped, the following
actions have to be taken to load the program counter and
registers: 1) Set 13th address bit to one, the bottom half of
the RAM is selected. 2) The bottom half of the RAM is
totally filled with jump to zero instructions. 3) One step is
executed. When the jump to zero instruction is executed,
the program counter will be one and at address zero the
return address is written. The return address is equal to the
address of the last executed jump instruction. This address
is equal to the program counter. 4) In the bottom half of
the PDP8 RAM, a PDP8 program is stored at address 1.
This program contains instructions to save the content of
the registers and indication bits. 5) The program is stopped
with a halt instruction. When the program is stopped, one
step is executed. This step is a jump instruction to the ad-
dress that is stored in address zero, this is the value of the
original program counter. In such way the original pro-
gram counter is restored. 6) The 13th address bit is set to
zero. The original program can be continued.
• Send acknowledge: When the host software wants to
read the buffer for incoming messages it will use the Win-
dows function Readfile. This function will not return until
data is read from the USB. Therefore before reading the
USB device, a message is send to the device. This is the
send acknowledge message, it returns a report with only
the header send acknowledge. In this way it is assured that
when the host reads the PDP8 device, there is always a
message in the buffer.
• Error message: A string of maximum 63 bytes including
a ’\0’ to terminate the string is send to the host. The host

will display this string to the user.
• Debug message: A string of maximum 63 bytes includ-
ing a ’\0’ to terminate the string is send to the host. This
string was used during the development the software.

VI. SUMMARY

This article presented the design of the PDP8 device.
This PDP8 device is controllable from a host computer via
an USB connection. Data can be written in the switch reg-
ister and the RAM of the PDP8. External devices such as
a teletype printer can be connected to the PDP8 device.
Programs stored on paper tape can be read into the PDP8
memory and stored on the host computer. In this way orig-
inal PDP8 programs can run on the PDP8 device. In ad-
dition memory dumps of those programs can be made to
preserve them on more reliable information carriers, e.g.
CD roms for the future.

The operating system OS 8, that was used on PDP8
computers could not work on the PDP8 device. The rea-
son was that OS 8 incorporates opcode’s that the IM6100
processor does not support. To allow OS 8 to operate on
the PDP8 device a different Intersil processor (6120) is
needed. Using the tape reader of a teletype printer, we
loaded a Trac compiler from a paper tape into the PDP8 de-
vice. We couldn’t execute this compiler, because the com-
piler uses some additional I/O codes. Further work is re-
quired, to find out exactly for what I/O devices these codes
are. To connect extra I/O devices to the PDP8 device addi-
tional I/O extension chips (IM6101) and UART (IM6402)
should be connected to the PDP8 processor. This will re-
quire PCB redesign however. We only have saved the com-
piler on the host computer, and executed it inside a PDP8
simulator [1]. On this simulator the Trac compiler worked
as expected.

REFERENCES

[1] Bernhard Baehr. PDP-8/e simulator. Website: http://home.t-
online.de/home/bernhard.baehr/pdp8e.html, 2004.

[2] Borland. Borland: Leading Provider of Technology for Software
Applications. Website: http://www.borland.com, 2004.

[3] Microsoft Corporation. Microsoft Corporation. Website:
http://www.microsoft.com, 2004.

[4] J. Craig Mudge Gordon C. Bell and John E. McNamara.Computer
Engineering, a DEC view of hardware system design. Digital Press,
1978.

[5] John Hyde.USB Design By Example. Intel Press, 2001.
[6] Intersil. Datasheet: IM6100 CMOS 12 bit microprocessor. Intersil

Inc., 1979.
[7] Douglas W. Jones.PDP-8 Frequently Asked Questions. Website:

http://www.faqs.org/faqs/dec-faq/pdp8, 2001.
[8] Philips. Datasheet: PDIUSB12. Philips, 2001.
[9] USB.org.USB.org - Welcome. Website: http://www.usb.org, 2004.

117

