SMOKE - Speeding up MPEG-4 Operational Kernels on
Excalibur

Jonathan Hofman, Guido de Goede, Georgi Gaydadjiev and Stamatis Vassiliadis
Computer Engineering Laboratory,
Electrical Engineering, Mathematics and Computer Science Department,
Delft University of Technology,
Delft, The Netherlands
E-mail: {jonathanhofman, gdgoede, georgi} @Dutepp0.ET.TUDelft.NL
http://ce.et.tudelft.nl

Abstract—This paper presents SMOKE hardware/software
(HW/SW) co design exploration of an MPEG-4 decoder on
Excalibur. SMOKE’s main goal is to provide a full-featured
hardware accelerated MPEG-4 decoder on the Altera Ex-
calibur device providing adequate speed performance. The
software part of SMOKE is based upon modified versions
of an open source operating system and codec - Linux and
XviD respectively. The SMOKE hardware accelerators are
designed using VHDL. The complete HW/SW system is built
using the Quartus design environment of Altera and a single
makefile. It is shown that a speedup of 1.29 for the MPEG-4
decoder will be realizable.

Key-words— hardware-software co design; ARM pro-
cessor; FPGA; reconfigurable hardware; MPEG-4

I. INTRODUCTION

It is envisioned that the correct answer for future perfor-
mance enhancement of embedded systems is through dedi-
cated hardware for the computation intensive kernels of the
targeted applications. Currently recognized applications
are the multi-media encoders and decoders used in the new
generation mobile devices. In order to preserve the flexi-
bility of such systems, solutions involving general-purpose
processors and reconfigurable hardware are emerging. The
latter increases the complexity of the design process, hence
new insights in this process are required. Therefore the
SMOKE (Speeding up MPEG-4 Operational Kernels on
Excalibur) project was initiated. SMOKE’s main goal is to
provide a full-featured hardware accelerated MPEG-4 de-
coder.

The target platform of SMOKE is DAMP (Delft Altera
based Multimedia Platform) [5]. DAMP is based on the
Altera Excalibur device [2] (EPXA1F672C3), which con-
tains an ARM992T processor and a 100k FPGA fabric.
The communication between the ARM processor and the
FPGA fabric is via the high-speed AMBA bus. The inte-
gration of a general purpose processor and an FPGA into
a single device, makes Excalibur well suited for hardware

software co-design targeting computation intensive appli-
cations with a large number of data transfers. Besides Ex-
calibur DAMP provides the necessary peripherals needed
by stand-alone multimedia applications, like a VGA inter-
face, a large SDRAM memory and a network interface.

To have basic support for networking, filesystem and
debugging a version of the Linux kernel (version 2.4.19-
rmk7) was ported to the DAMP platform. The MPEG-
4 decoder used for SMOKE is based on the open source
codec XviD [4]. The XviD codec was designed with porta-
bility in mind. Therefore porting the XviD codec to the
DAMP platform did not require significant changes to the
XviD codec sources.

The main contributions of this paper are:

o XviD evaluation based on profiling;

« implementation of the XviD hot spots in hardware;

e system integration and performance evaluation of
SMOKE.

This paper is organized as follows: Section II discusses
the software evaluation of the XviD codec and determines
which parts can most likely be sped up. After the design of
the hardware in the next sections III and IV, this expecta-
tion will be proven valid in the section V. Finally, section
VI concludes the paper and gives some recommendations
for future research.

II. XVID EVALUATION

In order to predict the impact of hardware acceleration
of certain XviD kernels the following methodology was
used. The XviD decoder was profiled using the profiling
tool which is part of gcc. This has first been done on a
pc running RedHat Linux 8.0 (gcc version 3.2) to obtain
initial indications as to which parts would benefit most of
implementation in hardware.

On the pc, the functions requiring the most time were
the colorspace conversion (from YUV to RGB) and the In-

398

verse Discrete Cosine Transform (IDCT). The colorspace
conversion takes over 20% of the processing time and the
IDCT uses almost 20%. These percentages are accurate up
to 5%, since subsequent iterations of the profiling provided
slightly different results. All resulted in these two func-
tions consuming a large amount of time. Comparison of
these measurements to profiling done on the DAMP plat-
form, showed some noticeable differences. The initializa-
tion of the XviD decoder was responsible for most of the
time on the DAMP platform. This is due to the limitations
of this version of the DAMP platform, but its impact is
negligible for longer movies. In that case the initialization
is only a small part of the whole, since the initialization is
needed only at the start of the decoding process. Besides
the initialization function, the functions requiring the most
time were again the colorspace conversion, the ICDT and
some functions calling the IDCT.

The colorspace conversion draws attention, because this
is an operation requiring a 3x3 matrix multiplication for
each pixel, which takes significant time in software, but
can be implemented easily in the VGA driver hardware.
The internal colorspace of the XviD codec is YUV and the
output of the MPEG-4 decoding needs to be RGB. This is
one operation that should be optimized by hardware. The
other operation to be optimized is the IDCT. It can be built
separately from the functions calling it, requiring only the
64 values, and no global values. In the future the functions
calling the IDCT could be designed into hardware as well,
using an Excalibur device with a larger FPGA fabric.

Both the IDCT and the colorspace conversion are re-
sponsible for a large part of the execution time of the XviD
decoder. It is expected that reducing the time needed for
both functions by using hardware will noticeably reduce
the decoding time of an MPEG-4 frame on the DAMP plat-
form.

III. INVERSE DISCRETE COSINE TRANSFORM

As stated in the profiling section, the (2-dimensional)
IDCT is responsible for a considerable part of the decod-
ing time of an MPEG-4 video. In this section the consider-
ations for the implementation of the IDCT in hardware are
elaborated.

The hardware part should enable the software to func-
tion as it did without hardware, without noticeable differ-
ences (except for speed). It should fit in the available re-
configurable hardware and has to be combined with the
hardware to speed up the colorspace conversion. Further-
more, the time needed for communicating between the
hardware and the software should be kept as small as pos-
sible.

To keep the communication overhead low, an efficient

way to communicate is required. The IDCT requires 128
bytes to be sent to the hardware and sent back after finish-
ing the IDCT. The transfer of the data and the IDCT op-
eration in hardware need to finish within the time needed
for the software to finish. In each cycle as much data as
possible needs to be transfered.

When exploring the ways for the ARM CPU to com-
municate with the connected FPGA, several options are
to be evaluated. There is one GPIO (General Purpose In-
put Output) register available for communication between
the CPU and the FPGA. This register allows 4 bits to be
transferred at a time, leaving it suitable only for signal-
ing purposes. Another way of communicating with the
hardware would be to use the AMBA bus and make the
FPGA a slave on that bus. The AMBA bus is a high speed
32 bit bus available in the Excalibur for connecting differ-
ent devices. A third option would be to use a DMA con-
troller inside the FPGA to copy the data via the AMBA bus
from memory accessible by the CPU, into a local mem-
ory on the FPGA. However both options using the AMBA
bus would increase the communication overhead and the
size of the hardware design, because extra hardware in the
FPGA would be needed to communicate. Finally the pre-
ferred option would be to use the available dual-port RAM
(DPRAM) , which is accessible by the CPU as well as
by the FPGA. It does require little extra hardware inside
the FPGA and it causes little communication overhead for
the hardware as well. The CPU communicates with the
DPRAM via the AMBA bus, as it does with all periphery.
The hardware in the FPGA however communicates with
the DPRAM directly. The DPRAM is large enough for the
data that needs to be transfered. One IDCT will be per-
formed each time, after which the results will be needed
for the continuation of the MPEG-4 decoder.

The 2-dimensional (2-d) IDCT of a 64 value matrix can
be calculated by first performing a 1-d IDCT operation on
each row and then performing the 1-d IDCT on each col-
umn of the resulting values, as explained in [3]. This is the
approach used by the XviD software. The hardware will be
designed in the same manner, to prevent differences with
the software caused by rounding.

The row operations must be performed before the col-
umn operations, but can be performed independently of
other row operations. Column operations can also be per-
formed independently of other column operations. When
comparing row and column operations in software, only
subtile differences appear between row and column op-
erations. This enables the design of a piece of hardware
capable of performing a row- or column operation when
requested to do so. A device capable of only row opera-
tions would take up about 50% of the available gates in the

399

DPRAM ill internal Memory
—\ in FPGA
—/| MUX
IT 1T
FSM REG j row/col j) REG

Fig. 1. Datapath of the implemented IDCT with row/col device.

FPGA fabric, when designed in hardware using Quartus
IT from Altera. When expanding it to perform the column
operation as well, about 60% of the FPGA fabric was cov-
ered. This device will be called the row/col device from
now on.

indent Using this row/col device some control logic is
needed to load the appropriate row or column into the de-
vice, store the results for column operations and in the
end writing back the results. The datapath in which this
row/col device is embedded is depicted in figure 1. The
DPRAM is capable of reading out 32 bits at a time, so four
reads are needed for the 128 bits. Initial simulations of
the row/col device showed that results of the operation are
available after about 100 ns.

Tests show that the DPRAM can be read out by the hard-
ware at 50 Mhz while still having the read value available
after one clock cycle. A 40 Mhz clock is sufficient for the
four values to be read out in 100 ns. The device uses extra
registers to pipeline the design so that new values can be
put into the row/col device at the same time as the previ-
ous results are read. The results from the row operations
are stored into an internal RAM on the FPGA and fed back
into the row/col device to perform the column operations.
After each column operation, the results are stored back
into the DPRAM. When the IDCT is finished the CPU will
be notified by toggling a bit in the GPIO register.

In figure 1 the ’FSM’ block contains a state machine,
written in VHDL, to control the registers and the commu-
nication with the DPRAM. The next section will describe
the design of the hardware for speeding up the colorspace
(YUV to RGB) conversion and for controlling the VGA
interface.

IV. COLORSPACE CONVERSION

As shown in section II XviD has another part besides
the IDCT that is responsible for a large amount of the
computation time. This is the colorspace conversion. The
colorspace conversion is responsible for outputting the de-
coded image in the color format that is used by the calling

application. XviD can convert into several colorspaces,
for instance RGB (Red, Green and Blue) and YUV (Lu-
minance, Chrominance blue, Chrominance red) [1]. These
conversions are linear transformations, which can be im-
plemented as matrix multiplications. A transformation can
be reversed, but the limited precision of computer hard-
ware results in rounding errors. These rounding errors can
result in the loss of image quality.

Some colorspaces make use of the special properties of
the human eye. The human eye is far more sensitive to
brightness then to color [1]. This property makes it pos-
sible to lower the resolutions for the color information
without resulting in noticeable differences for the human
eye. The YUV colorspace separates the color information
from the brightness and is therefore well suited to perform
(lossy) compression. So one value can for example be
stored for every pixel with information about the the lumi-
nance, while for the chrominances one value can be stored
stored for four pixels. Resulting in compacter images.

The XviD decoder uses YUV as native colorspace. This
means that all operations performed by the decoder are on
images in the YUV colorspace. The YUV colorspace is
stored in the yv12 format. The yv12 format stores one
value for the luminance of every pixel, but for every square
block of four pixels it stores one value for each of the
chrominance parameters.

A. VGA Controller

The DAMP platform will output the decoded images via
the VGA interface, which uses RGB as native colorspace.
The VGA interface hardware needs to be implemented in
the FPGA fabric, because no dedicated hardware, besides
the digital to analog conversion, is available on DAMP. A
simple VGA driver would only implement the possibility
for displaying images in the RGB colorspace, while a more
advanced VGA driver would adapt to the colorspace of the
driving application, in this case YUV.

A.1 Simple VGA controller

The simple VGA controller consists of 3 main parts, a
framebuffer, a DMA controller and a VGA driver. A block
diagram of such a controller is depicted in figure 2. The
framebuffer is located in the SRAM of the Excalibur de-
vice, while both the DMA controller and the VGA driver
are placed in the FPGA fabric. Because of the limited size
of the SRAM only frames with a maximum resolution of
160 by 120 pixels can be displayed. A framebuffer lo-
cated in the SDRAM would eliminate this restriction. Un-
fortunately the current prototype of DAMP does not allow
highspeed memory transfers from the SDRAM. Highspeed

400

Excalibur

A —
SRAM N ARM processor
L Data flow
l
Controlflow
- FPGA

IN | .
DMA Controller VGA Driver DA VGA
< ’ v c —v| out

Fig. 2. Blockdiagram of the VGA controller.

VGA Driver
—) . ~
Data flow Pixelcounter
> \ /
Controlflow > VGA
li Linecounter out
N
DMA L Linebutter vy [DAC [
Controller |) —/

Fig. 3. The VGA driver that supports only RGB values.

memory transfers are required for the correct operation of
the the VGA driver.

The VGA driver itself consist of several modules (de-
picted in figure 3). It contains a linebuffer, for holding the
pixel information of the current line, a pixelcounter and
linecounter, and some additional glue logic. The pixel-
counter is directly connected to the linebuffer which feeds
the DAC with the information of the current pixel. The
pixelcounter also generates some control signals needed
for the VGA interface and the linecounter. The linecounter
is connected to the DMA controller, which needs to refresh
the linebuffer after a line is written. With the information
from the linecounter the address of the new line within the
framebuffer can be calculated. The linebuffer is then filled
with the data for the next line before the first pixel needs to
be written. Furthermore the linecounter is also responsible
for the generation of some control signals needed by the
VGA interface.

A.2 Adapted VGA controller

The simple VGA driver worked completely in the RGB
colorspace. Because the decoder operates in the YUV col-
orspace a conversion needs to be made. Performing this
conversion in software consumes a significant amount of

VGA Driver

Pixelcounter | =
DMA transfer
statemachine #
' >
A Linecounter VGA
out
Y Y
A
DMA [) —N —N
Controller _! Linebuffer (Y) | DAC j
L—N |\ YUV
4 Linebuffer (U) —/ to |:'|>
> RGB Data flow
—
=v Linebuffer (V) :> Controlflow

Fig. 4. Block diagram of the VGA driver supporting YUV. The
grey blocks are added for the YUV support.

computation time, while the same can be achieved with a
relatively small hardware implementation. Therefore only
a few modules need to be added to the simple VGA driver.
The conversion of the pixels will be made just before they
are fed to the DAC. The datapath before the conversion
needs to be extended to support the separate Y, U and
V values. Therefore two linebuffers are added. This is
depicted in figure 4. Also the DMA controller needs to
perform three transfers on different memory locations, be-
cause of the separate locations in memory, where the Y,
U and V planes are stored. For this purpose an additional
control FSM at the top layer is added. The final modifi-
cation is placing a colorspace conversion module between
the output of the linebuffer and the DAC. It is possible to
switch this module to RGB mode (pass-through) or YUV
mode.

V. EXPERIMENTAL EVALUATION

As a result of the modifications mentioned in chapter I11
and IV a speedup of the XviD decoder can be expected.
In this chapter the experiments for evaluating the speed-up
and the results of these experiments are presented. For
these experiments the same reference data was used as
for the profiling process. All experiments were performed
within the kernel of the Linux operating system.

To calculate the speedups from the execution times,
Amdahl’s law is used (1).

TS w

S; = :
‘ - Tsw,z’ + Thw,i

T. ey

where Ty, is the execution time of the decoder when
none of the parts are accelerated by hardware. T, ; is the
execution time of a single kernel in software and T}, ; the

401

kernel part of | kernel expected
Tsw | speedup | XviD speedup
IDCT 20% 1.25 1.04
colorspace | 20% 12.28 1.23
both 40% 2.27 1.29
TABLE I

SPEEDUPS OF THE DIFFERENT KERNELS BY IMPLEMENTING
THEM IN HARDWARE. ALSO THE EXPECTED SPEEDUPS FOR
THE ENTIRE DECODER ARE GIVEN.

execution time of a single kernel in hardware.
When multiple kernels are accelerated using hardware
the speedup is given by

Tow
Thw

_ Tsw
Tsw - Z Tsw,z’ + Z Thw,i ’

where T}, is the total execution time when all the ker-
nels of interest are implemented in hardware. The maxi-
mum speedup can be calculated by letting » Thy; — 0.

Due to the limitation of the clock resolution it is not pos-
sible within the decoder to measure the execution time of
the separate kernels. Therefore the input data for the dif-
ferent kernels was extracted from the decoder during a test
run. The extracted data was used to execute the specific
kernels outside the decoder. In order to gain a higher clock
resolution the accelerated kernels were run as a linux ker-
nel module. A kernel module has better access to the lower
level hardware, which made it possible to access the inter-
nal timers. One of these timers was available to measure
the execution time of the accelerated kernels. The results
of these measurements are stated in table I.

The obtained speedup from software to hardware for
the IDCT when performing several thousand IDCTs on
reference data is 1.25 and the obtained speedup from soft-
ware to hardware for the colorspace conversion is 12.28.

From the speedups shown in table I, it is expected that
when implemented into XviD, the speedup of the decoder
due to the IDCT acceleration will be 1.04. For the col-
orspace conversion a speedup of 1.23 is expected. This
is expected to yield a speedup of 1.29 on the entire XviD
decoder, which is graphically depicted in figure 5.

S =

2

VI. CONCLUSIONS

In this paper the implementation of SMOKE was pre-
sented. Two computation intensive kernels of the XviD
MPEG-4 decoder were identified and implemented in
hardware. These kernels, the IDCT and colorspace con-
version, each are responsible for 20% of the decoders com-
putation time. The implementation of the IDCT and col-

120.0% -

100.0%

80.0% -

W SW

07 |
60.0% BHW

computation time

40.0% -

20.0% ~

0.0% -

IDCT

colorspace

Fig. 5. Comparison of the computation time for the accelerated
kernels.

orspace conversion in hardware resulted in a speedup of
1.25 and 12.28 respectively. When extrapolated to the im-
plementation into the entire XviD decoder, these results
indicate a speedup of 1.29. Such a speedup justifies hard-
ware software co design for real life multimedia applica-
tions like video decoding.

It is recommended for the future to implement the accel-
erations into the decoder and to verify the extrapolated re-
sults. Furthermore it would be of interest to run the exper-
iments on a revized version of the DAMP platform. This
revized version of DAMP would have a higher memory
bandwidth, making it better suited for multimedia applica-
tions.

REFERENCES

[1] P. Bourke. Ycc colour space and image compression, November
2000. http://astronomy.swin.edu.au/ pbourke/colour/ycc/.

[2] Altera Corporation. Excalibur Hardware Reference Manual,
November 2002.

[3] A.B. Watson. Image compression using the discrete cosine trans-
form. Mathematica Journal, 4:81-88, January 1994.

[4] XviD. http://www.xvid.org.

[5] W. Zwart, J. Eilers, G. N. Gaydadjiev, and S. D. Cotofana. Damp
- delft altera-based multimedia platform. In Proceedings ProRISC
2002, pages 587-594, November 2002.

402

