
HandBench: A Benchmarking Suite for Processors
Embedded in Handheld Devices

Pepijn de Langen Ben Juurlink Stamatis Vassiliadis

Computer Engineering Laboratory

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Mekelweg 4 2628 CD Delft

The Netherlands

phone: +31-15-278-3644

email:{pepijn|benj|stamatis}@ce.et.tudelft.nl

Abstract— Most microprocessors are employed in em-
bedded systems. Since many of these systems are powered
by batteries, energy consumption has become an important
design aspect. In order to quantify the performance and
energy consumption of different architectures, a collection
of benchmarks is required that closely represents the appli-
cations found on these devices. In this paper, we present
a benchmarking suite called HandBench that consists of
benchmarks which can be considered typical workloads of
contemporary and emerging handheld devices. Existing
benchmark suites such as MediaBench [4] and MiBench [3]
are inappropriate for our goal for the following reasons.
First, these suites contain a number of applications that
are, in general, not found on battery-powered devices (e.g.,
applications from the automotive domain). Also, we in-
cluded workloads that where not yet present in either of
these collections. Furthermore, for a number of applica-
tions that are contained in these suites, we have found that
the input datasets are not representative of those used in
real systems (e.g., using an incorrect sampling-rate).

keywords: benchmarking, handheld, embedded
processors

I. Introduction

The majority of manufactured processors are used
in embedded systems. As technology increases, these
processors are becoming increasingly important. The
number of cellular phones, digital camera’s, and sim-
ilar equipment sold each year is still rising, as is the
demand that is put on these devices. Besides the need
for computational power, there is another important
design aspect for these devices. Being powered by
a battery, the amount of available energy is limited.
This battery lifetime is also very important to users,
since the device becomes useless if the battery runs
out. The choice between energy and performance is
often not an easy one. In some cases, however, it is
clear that increased performance is only useful if it can

be achieved with an equal amount of energy usage or
less. An example of this is that any device being able
to decode a DVD, should also be able to perform this
for at least the duration of a normal movie.

In order to measure the performance and energy
consumption of different embedded processors, a num-
ber of representative applications is required, often
called benchmarks or workloads.

II. Related Work

Currently, there exists a number of different bench-
marking suites, all targeted at a certain domain.
The benchmarking suites by SPEC [1] (Standard Per-
formance and Evaluation Corporation) are probably
most well-known. Several suites have been published
by SPEC, like SPECint and SPECfp, and more re-
cently also more specific ones, for example SPEC-
mail2001 for benchmarking mail servers. None of
these, however, was useful for research in handheld
embedded systems. Lee et.al. introduced the Media-
Bench [4] suite, usefull for systems that run applica-
tions from the multimedia domain. Many of the hand-
held devices we consider run applications from this do-
main. However, besides the lack of typical handheld
applications from other domains, also the formats and
sizes of the inputs and outputs of the workloads were
not always representative. In 1997, the Embedded
Microprocessor Benchmark Consortium [6] (EEMBC)
was formed to develop benchmarks for the hardware
and software used in embedded systems. The goal of
the EEMBC, however, is to deliver benchmarks and
certified scores to processor manufacturers. In order
to get access to the benchmarks, a high fee must be
payed to join the consortium. Guthaus et.al. pro-
posed MiBench [3], a free benchmarking suite for em-
bedded systems. This suite makes an effort to provide

57

free benchmarks for the whole spectrum of embedded
systems. Also, there exists number of suites, like Java
SciMark 2.0 [5], that provide benchmarks to measure
the performance of scientific and numerical computing
on JVM’s (Java Virtual Machines).

For our research in low-power handheld devices,
there was a need for a collection of representative ap-
plications. The benchmarking suite we propose in this
work is largely based on MediaBench and MiBench.
We share several applications with the two, but there
are some differences in how we use them. Besides the
fact that we ofcourse chose to use more up-to-date
versions of some programs, we also made an effort to
use representative inputs. Also, we did not consider
the encoding and decoding to always be equally im-
portant. With MP3 (MPEG1 layer 3 audio), for ex-
ample, we consider decoding far more important than
encoding, since it is used significantly more often.

III. HandBench

Typically, benchmarks consists of two components:
an application, implementing one or more algorithms,
and an input set. In the following subsections, we
will discuss how both components were chosen for our
benchmarks.

A. Applications

The applications included in this benchmarking
suite are considered typical workloads of contempo-
rary and emerging handheld devices. In the selection
process, we have made the following limitations. The
first limitation we put on the programs, is the way it is
licenced. Our goal is to present a suite of benchmarks
which are redistributable, useable, and modifiable by
both academics and industry without any licencing
fee. In order to allow for optimizations (and portabil-
ity), these the source code of these applications should
also be available under these conditions. Therefore,
we have chosen to only include benchmarks with a li-
cence that is compatible with these needs. Examples
of these licences are the GNU Public Licence (GPL),
the BSD licence, and the MIT licence. Secondly, the
benchmarks should be able to run to a large number
of architectures. This implies that the the program
under consideration is either available for a number
of architectures, or is coded in such way that port-
ing it to a new architecture would require only few
code changes. Therefore, use of non-standard libraries
should be avoided. Third, the benchmarks should be
relatively easy to compile. This is somewhat similar
to the second limitation, only a bit more general. Of-

ten, researchers use a subset of the benchmarks in a
suite, because they were not able to compile the oth-
ers. To avoid this, we have not included programs
that showed to be difficult to compile.

As mentioned before, the benchmark suite proposed
in this work shares a number of applications with
suites like the multimedia suite MediaBench and the
embedded benchmarking suite MiBench. However,
these existing suites are inappropriate for our goal,
which is energy reduction of handheld devices. Al-
though our target is embedded systems and many
handheld devices implement applications from the
multimedia domain, we require only a subset of the
programs of both domains. Both earlier mentioned
suites contain a number of benchmarks which are
not found on battery-powered devices. We also in-
cluded workloads that were not yet present in either
of these suites. Furthermore, we have found that ex-
isting suites do not always supply a representative in-
put. Besides this, our suite defines the input-sets in a
slightly different manner.

The HandBench benchmarking suite consists of pro-
grams from the following software packages:

GSM 1.0.10 (Jutta Degener and Carsten Bormann)
GSM 06.10 implements the ETSI specifications of the
widely used Global System for Mobile telecommuni-
cation (GSM) protocol, using a RPE-LTP (Regular-
Pulse Excitation Long-Term Predictor).
GNU Ghostscript 7.07 (artofcode LLC) An inter-
preter for both the PostScriptTMand the Portable
Document FormatTM(PDF) languages.
JPEG 6b (Thomas G. Lane / The Independent JPEG
Group) Libjpeg is a widely used library to manipulate
JPEG images.
madplay 0.15.2b (Robert Leslie) MAD (MPEG Au-
dio Decoder) is a high-quality MPEG audio decoder
that supports MPEG-1 and the MPEG-2 extension
with layer I, II, and III (i.e., MP3).
Sablotron 1.0.1 (Ginger Alliance et.al.) Sablotron
is a fast, compact and portable XML toolkit. This
version implements XSLT 1.0, DOM Level2 and
XPath 1.0.
ffmpeg 0.4.9-pre1 (Fabrice Bellard et.al.) FFmpeg
is a fast video and audio converter that supports a
plethora of codecs.

Table I lists for each benchmark the originating soft-
ware package along with a short description of the
main algorithm and the corresponding handheld de-
vice or application. All listed programs compiled with
our ARM GCC 2.95.2 cross-compiler and executed
fine on the ARM port of SimpleScalar.

58

Package Benchmark Algorithm Device/Application

GSM 06.10 toast GSM encoding Cellular phones
untoast GSM decoding

GNU Ghostscript 7.07 gs PostScriptTMrendering PDA’s

JPEG 6b djpeg JPEG decompression Cellular phones / PDA’s
cjpeg JPEG compression

madplay 0.15.2b madplay MP3 decoding Portable music players

Sablotron 1.0.1 sabcmd ‘nothing’ XML transforms Office applications
sabcmd ‘complex’
sabcmd ‘extract’
sabcmd ‘replace’

ffmpeg 0.4.9-pre1 ffmpeg ‘decode DVD’ MPEG-2 decoding Movie players
ffmpeg ‘encode DVD’ MPEG-2 encoding Digital video camera’s
ffmpeg ‘encode DV’ DV encoding Digital video camera’s

TABLE I

Benchmarks included in HandBench.

The benchmarks in our suite can be divided up in
two groups: the benchmarks that use a streaming in-
put and the ones that do not. Tables II and III list
the benchmarks and inputs of both groups.

B. Input Sets

Most, if not all, benchmark suites are collections of
programs, accompanied by a standard input set. Since
programs can behave differently on different inputs, a
fixed input assures the researcher that the produced
results are always comparable. In our opinion, the re-
sults of a benchmark should definitely not be biased
by using a different input set. However, this does not
imply that the input should be exactly the same. In
fact, different inputs of the same kind should result
in about the same numbers. If two different inputs
do not result in comparable numbers, these inputs
are clearly not of the same kind. In this case, these
combinations of program and inputs define different
benchmarks. An example of this can be found with
decoding an MPEG stream. Here, the use of differ-
ent prediction schemes (i.e., the number of predicted
frames following each intra-coded frame) will largely
determine the behavior of the decoding kernel. An-
other example is found when encoding to a variable
bit-rate MPEG stream. In this case, the contents of
each frame determines the required bit-rate for corre-
sponding encoded frame. From this, we conclude that
any input can be used, as long as it is comparable
(i.e., leads to the same results) as a reference input.
This does not imply that just any input can be used.
In fact, it means one should use different inputs, and

that these inputs should produce nearly the same re-
sults. This comparison is also the recommended way
to ascertain that the the results are independent of
the input.

The same reasoning holds for the length of an input
set. An input set should be sufficiently large, to make
sure that all time-independent measurements (i.e.,
cache miss-rates, average power consumption) have
time to reach a stabilized value. Often, researchers
‘fast-forward’ a number of instructions from the be-
ginning of a benchmark. One of the reasons for this,
is to to ‘warm up’ components like branch predictors
and caches. Another reason might be that the at the
beginning of an application, significant time is spend
on code that is not considered part of the main algo-
rithm. However, this code might still be important
since it might be used, for example, to load the input
data or setup decoding tables. If the input is large
enough, the influence of this start-up code is either
insignificant or, if it is still significant, it should not
be neglected. Therefore, blindly skipping a number
of instructions is, in our opinion, not advisable. Only
under certain circumstances, where using a larger in-
put is not feasible, should instruction skipping be em-
ployed.

If a benchmark is executed twice on the same suffi-
ciently large input, it is of course expected to produce
relatively the same results. Therefore, the size of the
input is not important, as long as it sufficiently large.
This too can be used to check for errors: If the con-
catenation of (the raw data of) twice the same input
results in different rates or averages than the single in-

59

put, the chosen input is either too small or something
else is wrong.

IV. Characterization

In this section, we will characterize the benchmarks
of HandBench.

A. Methodology

We have used the ARM port of the SimpleScalar [2]
toolkit in order to characterize the different bench-
marks. We have used a configuration that resembles
a SA-1 StrongArm pipeline, almost similar to the one
distributed by the authors of the simulator. All bench-
marks have been cross-compiled using GCC 2.95.2 on
an Intel Pentium 4 running Debian GNU/Linux 3.0.
The main advantage of this setup is that, in contrast
to the SimpleScalar PISA target, the ARM target is
an existing processor. Because of this, there is a large
number of libraries available for this target. Further-
more, simulating an existing processor allows for ver-
ification of the simulator using a real system.

We have simulated the applications using increas-
ing sizes of input data. By comparing the results of
different input sizes, in case of the streaming bench-
marks, we can verify that the used inputs are suffi-
ciently large. This comparison also allows us to esti-
mate the number of instructions issued in the start-up
part of the programs. For the non-streaming bench-
marks, this comparison is interesting, but cannot be
used to determine the correctness of the input.

During our research, we came across a number of
abnormalities, which will be discussed below. First, it
is known that SimpleScalar only simulates the user-
mode instructions. Operating system calls are han-
dled by a ‘proxy’, which simply translates the ARM
calls to operating system calls of the hosting machine.
Here, a problem arises when a program uses system
calls to load its input data, something that most pro-
grams do. When returning from a repeatedly exe-
cuted system call, this causes the simulator to have
the illusion that the newly loaded data already re-
sides in the cache. In a system that employs physi-
cal addresses in its cache, this would indeed be possi-
ble. However, even in this case the operating system
must have experienced a cache-miss. By default, Sim-
pleScalar counts these accesses as hits, even though
the data has just been fetched from disk. A sim-
ple program that only reads data was used to verify
this. For this program, the cache-miss-rate could ar-
bitrarily be decreased by simply increasing the size
of the input. We have resolved this by flushing the

Benchmark inst./sec Startup Inst.

toast 10 M 125 k

untoast 56 M 11 k

madplay 141 M 202 k

ffmpeg ‘decode DVD’ 350 M 46 M

ffmpeg ‘encode DVD’ ? ?

ffmpeg ‘encode DV’ ? ?

TABLE IV

Instructions per second of data for the

streaming benchmarks.

caches on system calls. SimpleScalar was altered to
support this, since it was only partly implemented.
Secondly, a number of system calls were not imple-
mented yet. In most cases, this was not a problem.
Sometimes, however, it limited the possible usage of
the benchmarks. For example, with ffmpeg it was
not possible to seek to a certain time in the input
video stream. Therefore, we could not easily select
the part of the video streams that we wanted to use
for our benchmarks. The third problem we noted was
that in sim-outorder, for the number of memory ref-
erences (i.e., sim num refs and sim total refs) the
number of decoded micro-operations is counted in-
stead of the number of load/store instructions. Since
load-multiple and store-multiple instructions are de-
coded to separate load/store micro-operations, these
numbers cannot be easily compared with, for ex-
ample, the total number of committed instructions
(i.e., sim num ins). Fourth, for some benchmarks,
we found that the simulator would exit with an er-
ror when ran certain benchmarks on our chosen input
data. Until now, we were not able to determine the
cause of this problem. Furthermore, the results we
got from sim-outorder, did not make sense in many
cases. This has let us to distrust most of the gener-
ated result. Because of this, the amount of results we
present here are limited.

B. Results

Figure 1 depicts the sizes of the data and text seg-
ments of each benchmark. Most interesting here is
the huge data size allocated for the ffmpeg bench-
mark. For the other benchmarks, the data segments
are not significantly large. Both gs and ffmpeg also
have a significantly larger text size than the other
benchmarks.

Table IV list the number of instructions required for
encoding or decoding 1 second of data for each stream-

60

Benchmark Input Minimum Size

toast king.sw 3 seconds

untoast king.gsm 3 second

madplay jonobacon-freesoftwaresong.mp3 1 second

ffmpeg ‘decode DVD’ ‘Taxi’ (DR90061) 10 seconds

ffmpeg ‘encode DVD’ taxi.yuv & taxi.wav ?

ffmpeg ‘encode DV’ taxi.yuv and taxi.wav ?

TABLE II

Input to the streaming/real-time benchmarks included in HandBench.

Benchmark Input Input Type

gs debian-faq.en.page1.ps PostScriptTMLevel 2, 1 page

djpeg DSC 5025.jpg 3008x2000 JPEG at quality 96

cjpeg DSC 5025.ppm 3008x2000 TrueColor Portable anymap

sabcmd ‘nothing’ input1.xml XML 1.0

sabcmd ‘complex’ input1.xml XML 1.0

sabcmd ‘extract’ input1.xml XML 1.0

sabcmd ‘replace’ input1.xml XML 1.0

TABLE III

Inputs to the non-streaming benchmarks included in HandBench.

Fig. 1. Data and text size of the benchmarks.

ing benchmark. In case of the toast, the untoast,
and the madplay benchmarks, it is clear that the
amount of start-up code is insignificant, even when
only 1 second of input data is used. For the DVD de-
coding benchmark, at least 10 seconds of data would
be best, so that the relative number of instructions
spend on start-up code would be in the order of 1%.

V. Conclusions & Future Work

We have presented HandBench, a benchmarking
suite for handheld devices. For a number of bench-
marks, we have shown that the small inputs are suffi-
ciently large. For some others, this was not yet possi-

ble due to problems with the simulator.

We found that the SimpleScalar toolset did not per-
form as well as expected. Several errors were found,
some of which were not easily fixed. Improvements
to this toolset, such as simulation of system calls, are
definitely needed.

As the performance of handheld devices improves
rapidly, so will the demand for more computational in-
tensive programs. Therefore, this benchmarking suite
is not fixed in time. As newer standards come to mar-
ket, we will have to update the corresponding bench-
marks. The current version as well as updates to the
suite will be available from the authors website.

We could not produce all of the results we would
have liked yet. Therefore, part of the characterization
of the benchmarks will be done in future work.

References

[1] Standard Performance Evaluation Corporation. http://

www.spec.org/.

[2] T. Austin et al. Simplescalar 3.0. http://www.

simplescalar.com/.

[3] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge, and R.B. Brown. MiBench: A Free, Com-
mercially Representative Embedded Benchmark Suite. In
WWC, 2001.

[4] Ch. Lee, M. Potkonjak, and W.H. Mangione-Smith. Media-

61

Bench: A Tool for Evaluating and Synthesizing Multimedia
and Communicatons Systems. In MICRO, 1997.

[5] R. Pozo and B. Miller. Java scimark 2.0. http://math.

nist.gov/scimark2/.
[6] the Embedded Microprocessor Benchmark Consortium.

http://www.eembc.org/.

62

