
1

Simulator-based Exploration of the Memory Hierarchy for
Data Dominated Applications

Jeroen van der Vegt<ajvdvegt@123mail.org>
Erik Brockmeyer<brockmey@imec.be>

Georgy Gaydadjiev<G.N.Gaydadjiev@ewi.tudelft.nl>

Abstract—Battery capacity cannot keep pace with increas-
ing energy requirements for portable electronic devices.
These devices are often equipped with multimedia applica-
tions, which require an increasing amount of energy as the
image quality is continuously improved. It has been indi-
cated that video compression causes the biggest part of the
total energy consumption, hence it is a potential candidate
for tremendous energy savings. Energy can, for example,
be saved by applying multiple, low power, low speed pro-
cessors, and by efficiently using the memory subsystem. To
exploit the memory hierarchy in a multiprocessor environ-
ment, the developer needs tools that automatically trans-
form his program to fit the targeted hardware This paper
describes a simulator which is used to evaluate the modifi-
cation of such code-rewriting tools for multiprocessor plat-
forms. The simulator focuses on the memory subsystem and
assumes that memory access timing is dominating the to-
tal execution time. Therefore, time spend on computations
is completely ignored. The simulator estimates execution
time and energy usage by automatic annotation of the user-
program’s source code. After annotation, the source code is
compiled and a fast, high-level simulation is performed.

An MPEG4 video encoder is used as a case study for both
the simulator and the code-rewriting tools. This encoder was
adapted to run on a parallel platform, and it is used to illus-
trate the modifications required to make use of the simula-
tor. The paper also illustrates how the simulator can be used
to find potential performance bottlenecks in any parallelized
algorithm.

It is shown that using six processors instead of a sin-
gle processor improves the performance by approximately
a factor three. Simulation results are analyzed to explain
the difference with the theoretical factor of six.

Key-words: Multiprocessor, memory, MPEG, simulator.

I. I NTRODUCTION

Several years ago, the Data Transfer and Storage Explo-
ration methodology [5] (or DTSE for short) development
was started at IMEC. This technique focuses on data us-
age, and tries to reduce power consumption of a computer
platform’s memory subsystem. In addition, it increases
performance of data dominated applications, such as mul-
timedia and telecommunication algorithms. The method-
ology works at the source code level, which means origi-
nal code is modified in order to implement the optimiza-

tions. It can therefore be seen as an extra pre-compiler
stage. The DTSE methodology will be discussed in more
detail in SectionIII . Previously, DTSE has mainly targeted
environments with a single thread of control for custom de-
sign. For the future, IMEC envisions a trend towards mul-
tiprocessor architectures. The current DTSE toolkit will
therefore be extended for platforms with a variable num-
ber of processors, which have different constraints with re-
spect to the memory hierarchy than single processor plat-
forms. The toolkit will specifically focus on the assign-
ment of data in the memory hierarchy. To steer future
research within IMEC, more information is needed about
the problems arising in such multiprocessor environments.
As a first step for this multiprocessor research, the timing
versus energy trade-offs for multiprocessor environments
when changing the memory hierarchy are explored in this
report. In order to perform such exploration, a simulator
is a very useful tool. A dedicated simulator has been de-
veloped to exactly fit the exploration needs, and to closely
integrate with existing tools. For easier reference through-
out this report, the simulator will be referred to as MuPSi
which is short forMu ltiProcessorSimulator.

II. TARGET ARCHITECTURE AND SIMULATOR

An important reason to build a simulator is that it is very
hard to predict what will happen when scarce resources run
out. Models to describe this are hard (if not impossible) to
develop, but insight in the potential problems could result
in better performance. An example of a scarce resource
that might run out is a data bus, contained by virtually
all computer platforms for data transport between different
components. When several components try to use the bus
simultaneously, bus congestion occurs. When no special
measures are taken, this is more likely to happen on a mul-
tiprocessor platform than on a single processor platform.
As the simulator is targeted to multi-processors platforms,
bus simulation is an important aspect of MuPSiṪo mimic
a real platform with any reasonable accuracy,only taking
the bus into account would not be sufficient. Therefore
a commonly used platform layout was examined, and all
key elements identified. All these elements were added to
MuPSiṪhese elements are depicted in Figure1 as squares,

167

mailto:ajvdvegt@123mail.org
mailto:brockmey@imec.be
mailto:G.N.Gaydadjiev@ewi.tudelft.nl

2

and listed here for convenience. The straight arrows in the
figure represent a data line, curved arrows indicate a con-
trol line.
Processors:These are the functional units in a platform.
As MuPSi focuses on the memory subsystem, the proces-
sors are largely disregarded. Separate processors are im-
plemented as POSIX[4] threads,
Data bus: This is used to copy data over between different
components of the platform. The main targets of this re-
port are small, low power systems where the load is spread
over multiple processors. Therefore a simple shared bus
was implemented. There is nothing however that prevents
extending the model with other, more complex bus mod-
els. Even though the resulting bus model is fairly easy, it
doestake bus conflicts into account, and it is possible to
assign priorities to bus transfers.
L1 memory:This is a small and fast memory connected
directly to the processors. Traditionally, L1 memory is a
data cache memory. In this environment it can be regarded
as a software-controlled cache, or ‘scratch-pad’ memory.
L2 memory:This is larger memory further away from the
processors, connected through the data bus. Accessing this
memory takes much longer than accessing L1 memory,
and it consumes more energy.
DMA/bus controller:This controls block transfers and ac-
cesses to the bus. This is assumed to be a separate func-
tional unit, but its energy consumption is not taken into
account.

Please note that MuPSi is set up in a flexible way, hence
not limited to this example. A real-life (but relative sim-
ple) example of such an architecture is for example the
BlackFin chip from Analog Devices, as mentioned in [1].

Data bus

....

L2 memory

L1 memory

Processor NProcessor 2Processor 1

DMA/bus

controller

L1 memory L1 memory

off −chip

on−chip

Fig. 1
A GENERAL MULTIPROCESSOR PLATFORM.

For MuPSi there has to be an easy way to judge the rel-
ative quality of different mapping alternatives, in terms of

power consumption and performance. MuPSi will there-
fore concentrate on the memory subsystem. In the cur-
rent implementation, the processor computation time is
ignored, assuming performance of the data subsystem is
dominant.

In order to decrease development time and increase
the maintainability of the source code, a modeling en-
vironment language like SystemC [3] was used, called
Tipsy [2].

III. E NERGY SAVINGS

A key issue in the DTSE methodology is the notion of
data locality. Data locality means that while data is often
stored in arrays, a lot of computations involve only a small
part of those arrays. Traditional processor caches might
not be able to exploit this fully. However, analyzing the
program code beforehand and rewriting parts of it, gives
an opportunity to reduce the energy consumption. An ex-
tra gain of this action is that it can potentially increase per-
formance.

An example of the energy savings using data copies is
depicted in Figure2. In this example, a program accesses
arrayA in a loop, in such a way that every element in the
array is accessed 5 times. In the figure, an architecture
with two layers of memory is depicted: a large memory
where the arrayA is stored, and a smaller memory where
a copy of this array,A’ , is stored. Accessing the smaller
memory costs only a tenth of the energy of what accessing
the larger memory will. The total number of accesses to
the array is 100%. WithoutA’ , the energy costs are also
100%. When the copyA’ is introduced, copying the data
generates some accesses toA asA’ has to be read from it.
All accesses to the data are still performed by the proces-
sor, which causes the same amount (100%) of accesses to
A’ . So using copyA’ generates more accesses (20 per cent
in this example), but the total energy used is less (down to
21 per cent). Arrays likeA’ are called ‘copy candidates’.

Data dominated applications often have multiple lay-
ers copy candidates. These can be depicted in so-called
‘reuse-trees’, one of which is depicted in Figure3 for an
actual MPEG4 codec. In this figure, arrays (with their
name in the source code) are shown in red on the top. The
arrows at the bottom point to accesses to these arrays in
the code. From bottom to top, copy candidates grow big-
ger and they will have less misses. ‘Less misses’ means
that higher memory levels need to be accessed less often,
which is reflected in a so calledreuse factor. The more ac-
cesses to higher memory levels can be avoided, the higher
the reuse factor. A copy that would only be read once has a
reuse factor of 1, and is actually an ordinary data pre-fetch.

For every access at the bottom there is a single path to

168

3

Memory layer 2,
P=1

A’Memory layer 1,
P=0.1

P total (without copy) = 100%

P total (with copy) = 100%x0.1
+ 20%x1

= 21%
100%

20%

Processor

A

Fig. 2
EXAMPLE OF ENERGY SAVINGS IN A TWO-LAYER MEMORY

SYSTEM.
P means ‘power used’, A and A’ are arrays.

the top. For every access in the source code, a copy can-
didate can be found for every loop the access is nested in.
Multiple copy candidates on an access-path therefore in-
dicate that the access is nested in multiple loops. To find
the best selection of copy candidates for a particular hard-
ware environment, a tool called MHLA (short for Memory
Hierarchy Layer Assignment) was developed.

Fig. 3
A REUSE TREE FROM ANMPEG4CODEC.
All nameless rectangles are copy candidates.

IV. RESULTS

A simulator has been developed which allows for fast
and easy exploration over several hardware aspects to min-
imize the energy consumption of an particular program on
a particular hardware platform. To illustrate the potential
use of the simulator, a real-life example of a platform opti-
mization has been performed. For this example, an optimal
platform for the QSDPCM [?] MPEG4 codec was sought.
The general layout of the target platform in mind was like
the platform in Figure1, where the number of processors

and the L1 sizes had to be optimized. As start of the explo-
ration, the optimal L1 size for a single-processor platform
was explored. The results are depicted in Figure4, and
they indicate that using 2.048 bytes L1 memory result in
lowest execution time.

 0

 5

 10

 15

 20

 25

 256 512 1024 2048 4096 8192 16384
 0

 5000

 10000

 15000

 20000

 25000

E
ne

rg
y

[m
J]

E
xe

cu
tio

n
tim

e
[c

lo
ck

 ti
ck

s]
 (

x
1.

00
0)

L1 size [bytes]

Execution time and energy usage vs. L1 size

Energy
Execution time

Fig. 4
ENERGY AND TIMING RESULTS FOR NO PARALLELIZATION

AND INCREASING L1 SIZES.

Building on these first results, the number of proces-
sors was increased while the L1 memory size was kept
constant. In order to utilize multiple processors, the al-
gorithm had to be adapted. Intra-frame parallelization was
chosen as best results were expected with that paralleliza-
tion, and this parallelization does not introduce additional
first-frame delay. For the parallelization, a frame was split
in several rows and column. The number of rows and
columns are run-time selectable, thus allowing for numer-
ous different parallel implementations of the algorithm.
Restrains in the MPEG algorithm prevented the use of
more than nine processors this way, but this turned out to
be enough for the exploration. The results are depicted in
Figure5.

This figure indicates using 6 processors results in fastest
execution and lowest energy consumption. More detailed
analysis of the results show bus congestion to be a major
bottleneck. This in turn is caused by sub-optimal paral-
lelization. An clear example of this is indicated in Fig-
ure6. In this figure, the analysis of a platform with seven
processors is shown. In this platform, every processor has
his own DMA controller, but all DMA controllers share a
single bus. For every DMA controller, their line is high
when it is active, and low when inactive.

Graphs like this give much insight in algorithmic prob-
lems and resulting hardware bottlenecks. For example, the
large gaps in the graphs for DMA controllers 5 and 6 turn
out to be caused by bad parallelization.

169

4

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0 200 400 600 800 1000 1200 1400 1600 1800

E
ne

rg
y

[m
J]

Time [clock ticks] (x 1.000)

Execution time vs. Energy
2048 bytes L1 memory

2 processors

1x22x1

3 processors

1x3
3x1

4 processors

1x4

2x24x1

5 processors

1x5

5x1

6 processors

1x6

2x3

3x2

6x1

7 processors

1x7

7x1

8 processors

1x8

2x4

4x2

8x1

1x9

3x3

9x1

9 processors

R

C

R Row-wise parallelizations
C Column-wise parallelizations

Fig. 5
ENERGY CONSUMPTION VERSUS EXECUTION TIME FOR

VARIOUS PARALLELIZATIONS.

Parallellisation: 1x6. Bus utilisation: 64.02%

Time [clock ticks] (x 1,000)

DMA controller 0

DMA controller 1

DMA controller 2

DMA controller 3

DMA controller 4

DMA controller 5

DMA controller 6

 0 200 400 600 800 1000

Fig. 6
BUS USAGE OF INDIVIDUAL DMA CONTROLLERS USING A

SEVEN-PROCESSORS PARALLELIZATION.

V. CONCLUSIONS

A multiprocessor platform simulator called MuPSi has
been developed. It allows for flexible creation of differ-
ent platforms, and fast exploration of various hardware as-
pects. It is targeted towards data dominated applications,
and has been validated using an MPEG4 video coder called
QSDPCM. This exploration has shown some of the prob-
lems that arise while parallelizing algorithms, and about
the prediction of performance of algorithms. An important
goal of the simulator was to allow easy simulation of paral-
lel algorithm execution on various hardware environments,
thereby obtaining detailed information about the memory
accesses. MuPSi fulfills the targeted requirements by im-
posing no limitations to the hardware to be simulated, and
performing the simulation fast. Based on simulator runs
using the non-parallelized version of the algorithm, sev-

eral parallelized versions of the QSDPCM MPEG4 algo-
rithm were selected to be evaluated using MuPSi. Best
performance was obtained using six processors, but results
showed a speedup of factor three instead of the theoreti-
cal factor six. Results from MuPSi give detailed insight
in what problems arise, and can thus be used to create an
optimized program for a specific hardware platform.

REFERENCES

[1] Blackfin,Blackfin bf561 data sheet,
www.analog.com/UploadedFiles/DataSheets/696848ADSP-
BF561HiSpeedpra.pdf.

[2] Johan Cockx, Tipsy homepage,
www.imec.be/design/background/tipsy/.

[3] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan,Sys-
tem design with systemc, Kluwer Academic Publishers, 2002.

[4] The Open Group, Ieee posix 1003.1c standard, IEEE
Standard for Information Technology, 2003,www.unix-
systems.org/version3/ieeestd.html.

[5] P.Panda, N.Dutt, A.Nicolau, F.Catthoor, A.Vandecappelle,
E.Brockmeyer, C.Kulkarni, and E.De Greef,Memory organisation
and optimizations in application-specific systems, IEEE Design
and Test of Computers, vol. 18, June 2001, pp. 56–69.

170

http://www.analog.com/UploadedFiles/Data_Sheets/696848ADSP-BF561_HiSpeed_pra.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/696848ADSP-BF561_HiSpeed_pra.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/696848ADSP-BF561_HiSpeed_pra.pdf
http://www.imec.be/design/background/tipsy/
http://www.unix-systems.org/version3/ieee_std.html
http://www.unix-systems.org/version3/ieee_std.html

	Introduction
	Target architecture and simulator
	Energy savings
	Results
	Conclusions

