
Efficient State Management for
Tile-Based 3D Graphics Architectures

Iosif Antochi, Ben Juurlink, Stamatis Vassiliadis Petri Liuha
Computer Engineering Laboratory, EEMCS NOKIA Research Center

Delft University of Technology Tampere, Finland
Mekelweg 4, 2628 CD Delft, The Netherlands E-mail: petri.liuha@nokia.com

Phone: +31 15 2783644 Fax: +31 15 2784898
E-mail: {tkg|benj|stamatis}@ce.et.tudelft.nl

Abstract— Tile-based rendering is a promising technique
for low-power, 3D graphics platforms. This technique de-
composes a scene into smaller regions called tiles and ren-
ders the tiles one-by-one. The advantage of this scheme is
that a small memory integrated on the graphics accelerator
can be used to store the color components and z (depth) val-
ues of one tile, so that accesses to these values are local, on-
chip accesses which consume significantly less power than
off-chip accesses. Tile-based rendering, however, requires
that the primitives (commonly triangles) and state changes
are sorted into bins corresponding to the tiles. In this paper
we determine the optimal state change operations (e.g., en-
able/disable z testing, create/delete a texture) that should be
included for each tile. Experimental results obtained using
several suitable 3D graphics workloads show that various
trade-offs can be made and that, usually, better performance
can be obtained by trading it for memory.

Keywords— 3D graphics architecture, tile-based render-
ing, state management.

I. INTRODUCTION

Low-power mobile devices are becoming increasingly
popular. They are no longer used only for mobile tele-
phony or as a PDA, but also for a broader spectrum of ap-
plications like e-commerce and interactive 3D games [1].
However, the resources offered by such platforms are
rather limited.

Tile-based rendering (also called chunk rendering or
bucket rendering) is a technique in which the scene is di-
vided into tiles and the tiles are rendered independently.
Tile-based rendering appears to be promising for low-
power implementation because the color components and
depth values of the primitives of a certain tile can be stored
in small, on-chip buffers and only the pixels visible in
the final scene need to be written to the external frame-
buffer. Since external memory accesses dissipate signifi-
cant amounts of power, replacing them by accesses to local
buffers reduces the power consumption.

Tile-based rendering requires, however, that the primi-
tives are sent to the accelerator in tile-based order. In other

words, they need to be sorted into bins or buckets that cor-
respond to the tiles. Moreover, the initial state information
required to render each primitive should also be distributed
among primitives.

Determining which state change operations can be
safely removed and when is not trivial. For instance, if a
delete texture command is encountered while rendering the
current tile, the texture can be safely deleted only when all
primitives (from all tiles) that use this texture are rendered
or it can be deleted when multiple copies of the texture
are kept in memory. Also, including all the state change
operations to each tile is not a practical solution since it
requires duplicating large amounts of state variables (e.g.,
texture objects) for each tile.

In this paper we analyze the state change data sent to a
tile-based renderer and propose algorithms to optimize it.

This paper is organized as follows. After describing the
previous work on state management for tile-based render-
ers in Section II, we describe in more detail the OpenGL
state information in Section III. In Section IV are de-
scribed the state management algorithms we considered
for our implementation. Experimental results are pre-
sented in Section V, and the conclusions are given in Sec-
tion VI.

II. RELATED WORK

Tile-based architectures were initially proposed for
high-performance, parallel renderers [2], [3], [4]. Since
tiles cover non-overlapping parts of a scene, the triangles
that intersect with these tiles can be rendered in parallel.
In such architectures it is important to balance the load on
the parallel renderers [5]. These studies are, however, not
very related to our study since we consider a low-power ar-
chitecture in which the tiles are rendered sequentially one-
by-one.

Tile-based rendering has also been used in power-aware
architectures [6], [7].

Two specific issues related to tile-based rendering are

336

EnableDepth
Triangle(1)
DisableDepth
Triangle(2)
EnableDepth
Triangle(3)

Fig. 1. Static state - initial instruction stream fragment

per tile primitive sorting and state management.

While the process of determining which primitives be-
long to a tile was already discussed in the literature [8],
there are less details about state management for tile-based
state management algorithms.

III. OPENGL STATE INFORMATION

The OpenGL state information can be divided into two
parts. The first part is the static state information, that is the
state information that needs to be stored irrelevant of the
application. For instance, the information that describes
the state of the depth unit is always defined. The second
part of the state information is the dynamic state informa-
tion. The dynamic state information contains the state in-
formation which is application dependent. For instance,
the texture state depends on the number of textures loaded
by the application.

A. Static State Information

The static state information part of the OpenGL state
machine is usually less than the dynamic state information
and it has no side effects. More precisely, duplicating the
static information to each tile does not affect the execution
semantics of OpenGL. However, since the primitives that
do not overlap a tile are deleted from the instruction list
of the respective tile, some state information might be also
eliminated. Figure 1 depicts a fragment of instructions sent
to the rasterizer. Assuming that triangle 1 overlaps tile 2,
triangle 2 overlaps tile 1, and triangle 3 overlaps tiles 1
and 2, the instruction stream that might be generated by a
tile-based driver is depicted in Figure 2. The emphasized
state changing instructions can be also deleted from the
tiled instruction stream. By eliminating the unnecessary
state change instructions, the data traffic to the rasterizer
is decreased. Nevertheless, we note that determining if a
state instruction can be eliminated might consume actually
more system bandwidth than sending it directly to the ras-
terizer.

Tile1

EnableDepth
DisableDepth
Triangle(2)
EnableDepth
Triangle(3)

Tile2

EnableDepth
Triangle(1)
DisableDepth
EnableDepth
Triangle(3)

Fig. 2. Static state - tiled instruction stream fragment

B. Dynamic State Information

In this section we describe in more detail the state in-
formation required to be stored for texturing. Figure 3 de-
picts the texture state information organization. Each tex-
ture unit supported by the hardware has a link to a current
texture object. Each texture object, identified by a texture
id, contains information such as: the texture image for-
mat, the width and the height of the largest texture level,
the minification and magnification functions, and links to
texture images for valid texture levels. A texture object
can be bound to a texture unit using the BindTexture com-
mand. When a texture object is no longer needed, it can be
deleted using the DeleteTexture command.

IV. STATE MANAGEMENT ALGORITHMS FOR

TILE-BASED RENDERING

This section presents several algorithms that can be used
to correctly handle the state information when using a tile-
based rendering model.

A. Partial Rendering Algorithm

In this algorithm, whenever an instruction that has side-
effects is encountered (e.g., DeleteTexture) in the input
stream, the driver renders all previously buffered instruc-
tions and then executes the instruction. While partial ren-
dering is a solution to rendering commands having side
effects, it might also introduce significant rendering over-
head. For example, consider that the instruction stream
depicted in Figure 4 was sent to the rasterizer. The as-
sumptions are the same as described in Section III-A. The
tile-based driver or a tile-based rasterizer state manage-
ment engine could issue the instruction stream depicted in

337

Unit 0
Texture

Texture Texture
Object 0

Image 0

Fig. 3. Texture state information.

Start Frame
CreateTexture(i)
MakeCurrentTexture(i)
Triangle(1)
Triangle(2)
DeleteTexture(i)
CreateTexture(i)
MakeCurrentTexture(i)
Triangle(3)

End Frame

Fig. 4. Partial rendering - initial instruction stream

Figure 5. Since tiles are rendered sequentially, all the in-
structions preceding the DeleteTexture(i) instruction, in all
tiles, must be rendered so that all the primitives using tex-
ture i are rendered and thus the DeleteTexture instruction
can be executed. For each partial rendering the introduced
overhead consists of saving and reloading the contents of
each tile and also extra context (all the state information)
save and reload operations.

B. Delayed Execution Algorithm

In this algorithm, when commands that affect dynamic
state, e.g., Delete Texture or TextureImage, are encoun-
tered in the input stream, the driver will postpone their
execution until all the primitives depending on them are
rendered or the end of the current frame is reached. For
instance, assume that a DeleteTexture was encountered.
As long as no request to create new textures are received,
thus no reuse required, for the texture ids, the execution
of the DeleteTexture command can be safely delayed until

Start Frame
Tile 1

c1=SaveCurrentContext
RestoreTileFromGlobalBuffer
CreateTexture(i)
MakeCurrentTexture(i)
Triangle(2)
SaveTileToGlobalBuffer
c2=SaveCurrentContext

Tile 2
RestoreContext(c1)
RestoreTileFromGlobalBuffer
MakeCurrentTexture(i)
Triangle(1)
SaveTileToGlobalBuffer
DeleteTexture(i)

Tile1
c1=SaveCurrentContext
RestoreTileFromGlobalBuffer
CreateTexture(i)
MakeCurrentTexture(i)
Triangle(3)
SaveTileToGlobalBuffer

Tile 2
RestoreContext(c1)
RestoreTileFromGlobalBuffer
MakeCurrentTexture(i)
Triangle(3)
SaveTileToGlobalBuffer

End Frame

Fig. 5. Tiled instruction stream using partial rendering

338

Start Frame
Tile 1

c1=SaveCurrentContext
RestoreTileContentsFromGlobalBuffer
CreateTexture(i)
MakeCurrentTexture(i)
Triangle(2)
MarkDeleteTexture(i)
RenameTexture(i,j)
MakeCurrentTexture(j)
Triangle(3)
SaveTileContentsToGlobalBuffer

Tile 2
RestoreContext(c1)
RestoreTileContentsFromGlobalBuffer
MakeCurrentTexture(i)
MakeCurrentTexture(i)
Triangle(1)
MakeCurrentTexture(j)
Triangle(3)
SaveTileContentsToGlobalBuffer

After Last Tile
DeleteTexture(i)
MoveTextureLinks(i,j)

End Frame

Fig. 6. Delayed tiled instruction stream using delayed commit

all the primitives that use the texture are executed. How-
ever, if the application requests a new a texture id from
the OpenGL front-end, and obtains a texture id that was
deleted on the same frame but not committed, then the
tile-based driver must create a new texture object that will
be linked with a new id, while the old texture object will
remain accessible until all primitives using the old tex-
ture are rendered or until the end of the frame. Execut-
ing (committing) the commands when all primitives de-
pending upon them are finished has a higher computational
power than executing it at the end of the frame since it re-
quires determining the last tile and the last primitive de-
pending on it.

V. EXPERIMENTAL RESULTS

In order to compare the efficiency of the proposed al-
gorithms we used the benchmarking suite proposed in [9].
It consists of 7 components: Q3L, Q3H, Tux, Aw, ANL,
GRAZ, and DINO. The Q3L profile corresponds to a low
resolution (320x240) demo of the Quake III 3D FPS game.
The Q3H profile is based on the same demo as Q3L only
that it uses higher resolution (640x480). Tux is a 3D racing
game (guide a penguin) available on Linux platforms. The
Aw (Awadvs-04) profile is part of the Viewperf 6.1.2 pack-
age. The NAT, GRAZ, and DINO are 3D VRML models

for which “fly-by” scenes were created and traced. The
traces were fed to our modified Mesa library. The Mesa li-
brary performed primitive backface culling and generated
lists of remaining primitives. The list of primitives were
sent to our tile-based accelerator simulator, where differ-
ent primitive to tile bounding box tests were used. We
used a tile size of 32x16 pixels, and the window sizes were
320x240 for Q3L, and 640x480 for the other benchmark
suite components.

Figure 7 depicts the percentage of the state information
and primitives sent to the accelerator. The average per-
centage of unoptimized tile-based state information across
the benchmarks is 44%. This high percentage is obtained
due to the overhead of state information replication and
also additional tile-based specific state change informa-
tion such as load and save tile operations. The Aw com-
ponent has the lowest percentage of state change due to
the fact that most of the state change is performed if the
first frames and there is little state variation from frame
to frame. GRAZ, Tux, and Q3, on the other hand, com-
bine multiple texture and blending modes and depth tests
so they require more state information to be sent to the ac-
celerator.

Figure 8 presents the state changed sent to the raster-
izer using direct transfer or lazy commit (delayed) meth-
ods. The delayed method reduces the number of writes to
the accelerator, by up to 58%, by filtering the state infor-
mation and eliminating unnecessary writes, thus providing
the optimal state traffic with the expense of a small addi-
tional memory. The obtained results show that the state
information for the Q3H, GRAZ, and ANL components
can be significantly reduced. The state traffic for the Aw
component, however, could not be decreased since there
were no unnecessary state changes.

VI. CONCLUSIONS

In this paper we have presented several state manage-
ment algorithms for tile-based renderers. While in tradi-
tional (non tile-based) rendering the state information traf-
fic can be negligible compared to the traffic generated by
the primitives, in tile-based rendering architectures, since
the state information might need being duplicated in mul-
tiple streams, the required processing power and gener-
ated traffic can increase significantly. Moreover, remov-
ing primitives from the instruction stream of a tile de-
pends only on the primitive position and the tile coordi-
nate. To remove a state change instruction from the in-
struction stream of a tile, information about the previous or
the following state change instructions and/or primitives is
required. Thus, in order to send an optimal state change
stream to the accelerator, i.e., use minimal bandwidth, ad-

339

Fig. 7. Percentage of state information and triangles sent to the accelerator per frame.

Fig. 8. Average number of state information writes to the accelerator per frame.

ditional processing power and more processor bandwidth
is required. By sending an optimal state change stream to
the accelerator, the state change traffic to the accelerator
was decreased up to 58%.

REFERENCES

[1] The New York Times. Cell Phone Games Take Leap Into
3D. Available at http://news.com.com/Cell+phone+
games+take+leap+into+3D/2100-1043_3-5237341.
html.

[2] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, B. Tebbs G. Turk, and L. Israel. Pixel-
Planes 5: A Heterogeneous Multiprocessor Graphics System Us-
ing Processor-Enhanced Memories. Computer Graphics, Vol. 23,
No. 3, pp. 79–88, July 1989.

[3] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs.
A Sorting Classification of Parallel Rendering. IEEE Comput.
Graph. Appl., 14(4):23–32, 1994. IEEE Computer Society Press.

[4] Greg Humphreys, Mike Houston, Ren Ng, Randall Frank, Sean
Ahern, Peter D. Kirchner, and James T. Klosowski. Chromium: A
Stream Processing Framework for Interactive Rendering on Clus-

ters. In Proc. 29th Annual Conf. on Computer Graphics and Inter-
active Techniques (SIGGRAPH 2002), pages 693–702, 2002.

[5] Carl Mueller. The Sort-First Rendering Architecture for High-
Performance Graphics. In Proc. 1995 Symp. on Interactive 3D
Graphics, pages 75–84. ACM Press, 1995.

[6] PowerVR. 3D Graphical Processing (Tile Based
Rendering - The Future of 3D), White Pa-
per. http://www.beyond3d.com/reviews/videologic/
vivid/PowerVR WhitePaper.pdf, 2000.

[7] Emile Hsieh, Vladimir Pentkovski, and Thomas Piazza. ZR: A 3D
API Transparent Technology for Chunk Rendering. In Proc. 34th
ACM/IEEE Int. Symp. on Microarchitecture (MICRO-34), 2001.

[8] Iosif Antochi, Ben Juurlink, Stamatis Vassiliadis, and Petri Liuha.
Scene Management Models and Overlap Tests for Tile-Based Ren-
dering. In Proc. EUROMICRO Symp. on Digital System Design,
pages 424–431, 2004.

[9] Iosif Antochi, Ben Juurlink, Stamatis Vassiliadis, and Petri Liuha.
GraalBench: A 3D Graphics Benchmark Suite for Mobile Phones.
In Proc. ACM SIGPLAN/SIGBED Conf. on Languages, Compil-
ers, and Tools for Embedded Systems (LCTES’04), pages 1–9, June
2004.

340

