
Efficient Tile-Aware Bounding-Box Overlap Test for Tile-Based Rendering

I. Antochi, B. Juurlink, S. Vassiliadis
Computer Engineering Laboratory

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: {tkg, benj, stamatis}@ce.et.tudelft.nl

P. Liuha
Nokia Research Center
Visiokatu-1, SF-33720

Tampere, Finland
E-mail: petri.liuha@nokia.com

Abstract

Tile-based rendering appears to be a promising tech-
nique for low-cost, low-power 3D graphics platforms. This
technique decomposes a scene into tiles and renders the
tiles independently. It requires, however, that the primitives
are sorted into bins that correspond to the tiles, which can
be very time-consuming and may require a lot of memory
bandwidth. The most often used test to determine if a prim-
itive and a tile overlap is the bounding box test. This test
checks if the 2D axis aligned bounding box of the primi-
tive overlaps the tile and comprises four comparisons in the
worst case. In this paper we show that the efficiency of the
bounding box test can be improved significantly by adap-
tively varying the order in which the comparisons are per-
formed depending on the position of the current tile. Exper-
imental results obtained using several 3D graphics work-
loads show that the dynamic bounding box test reduces the
average number of comparisons per primitive by 26% on
average compared to the best performing static version in
which the order of the comparisons is fixed.

1. Introduction

With the advent of the system-on-chip (SOC) design
paradigm for embedded systems, 3D graphics accelerators
for mobile platforms, in particular mobile phones, are be-
coming increasingly popular. Since mobile phones are pow-
ered by batteries, a 3D graphics accelerator for such devices
should dissipate as little energy as possible.

Tile-based rendering (also called chunk rendering or
bucket rendering) is a technique in which the scene is di-
vided into tiles and the tiles are rendered independently.
Tile-based rendering appears to be promising for low-power
implementation because the color components and depth
values of the primitives of a certain tile can be stored in
small, on-chip buffers and only the pixels visible in the final
scene need to be written to the external framebuffer. Since

external memory accesses dissipate significant amounts of
power, replacing them by accesses to local buffers reduces
the power consumption.

Tile-based rendering requires, however, that the primi-
tives are sent to the accelerator in tile-based order. In other
words, they need to be sorted into bins or buckets that cor-
respond to the tiles. The test commonly employed to deter-
mine if a primitive (triangle in most cases) overlaps with a
tile is the so-called bounding box (BBOX) test. It consists of
four comparisons that test if the maximum (resp. minimum)
x- or y-coordinate of the triangle is smaller (resp. larger)
than the minimum (resp. maximum) x- or y-coordinate of
the tile. If one of these tests succeeds then the triangle def-
initely does not intersect with the tile. If all tests fail then
the triangle might intersect with the tile.

Sorting the primitives can be performed by the acceler-
ator or by the host processor. Because the amount of chip
area of our low-cost target system (a 3D graphics acceler-
ator for mobile phones) is severely limited, we assume it
needs to be performed by the host CPU. If sorting is per-
formed in software then the order in which the compar-
isons are applied can have a significant impact on the per-
formance. For example, for the tile in the upper-left corner
we expect that most triangles are located to the east and/or
south of it.

In this paper we present several versions of the bounding
box test that dynamically vary the order of the comparisons
depending on the position of the tile that is currently being
rendered. It is shown that these dynamic versions of the
bounding box test perform significantly better than the static
version. Because the primitives have to be sorted at frame
rate, it is important that the sorting process to be executed
as fast as possible.

The paper is organized as follows. Related work is
briefly described in Section 2. Section 3 describes the
bounding box test in more detail and presents our dynamic
versions. Experimental results are provided in Section 4,
and concluding remarks are given in Section 5.

0-7803-8558-6/04/$20.00 ©2004 IEEE.



2. Related Work

Tile-based architectures were initially proposed for high-
performance, parallel renderers [5, 8, 7]. Since tiles cover
non-overlapping parts of a scene, the triangles that intersect
with these tiles can be rendered in parallel. In such archi-
tectures it is important to balance the load on the parallel
renderers [9]. These studies are, however, not very related
to our study since we consider a low-power architecture in
which the tiles are rendered sequentially one-by-one.

Tile-based rendering has also been used in power-aware
architectures [10, 6]. However, no details have been pro-
vided on how the primitives are sorted into bins correspond-
ing to the tiles. Furthermore, in the literature mentioning the
usage of bounding box tests [10, 6, 4, 3] there is no men-
tion on how the bounding box tests are implemented or per-
formed. Some implementation details were provided in [2]
where several scene management algorithms for tile-based
architectures were presented, based on a two step model.

3. Static and Dynamic Versions of the Bound-
ing Box Test

In this section we describe the BBOX test in detail and
present our dynamic versions of the BBOX test.

3.1. Overview of the BBOX Test

Fig. 1 illustrates the BBOX test. It consists of two
steps. First, the 2D axis aligned BBOX of the prim-
itive is computed. Thereafter, it is determined if the
BBOX intersects the tile. Let a triangle Tr be defined
by three points p1, p2, and p3, whose x coordinates
are given by pi.x and whose y-coordinates are given
by pi.y. Then the BBOX of Tr is defined by the tu-
ple (BBOX.MinX, BBOX.MinY, BBOX.MaxX, BBOX.MaxY)
where

BBOX.MinX = MIN(p1.x, p2.x, p3.x)

BBOX.MinY = MIN(p1.y, p2.y, p3.y)

BBOX.MaxX = MAX(p1.x, p2.x, p3.x)

BBOX.MaxY = MAX(p1.y, p2.y, p3.y).

Let the tile be given by the tuple
(T.MinX, T.MinY, T.MaxX, T.MaxY). Then a possible
implementation of the BBOX test in C is:

if (BBOX.MaxX < T.MinX) /* Test 1 */
return NoOverlap;

if (BBOX.MinX >= T.MaxX) /* Test 2 */
return NoOverlap;

0 1

1

2

0

2

p

p

x

y

3

Bounding

No overlap

Bounding Box &
Triangle Overlap

Only Bounding Box Overlap

Current Tile

Box of Tr

1

3

p2

Tr

Figure 1. Triangle to tile BBOX test

if (BBOX.MaxY < T.MinY) /* Test 3 */
return NoOverlap;

if (BBOX.MinY >= T.MaxY) /* Test 4 */
return NoOverlap;

return MightOverlap;

We remark here that if all tests fail then the triangle might
overlap the tile but it might also be the case that the BBOX
intersects with the tile but the triangle does not. This is il-
lustrated in Fig. 1. The light-grey tiles intersect with the
BBOX but not with the triangle. Thus the BBOX test per-
forms only a partial classification. There are two ways to
deal with this situation. Either an additional, exact but more
expensive test is performed, or the triangle is sent to the
rasterizer in which case no fragments are generated for the
triangle if it does not overlap the tile. In practice the BBOX
test is preferred to exact but more expensive tests because
of its simplicity and because it is quite accurate.

3.2. Primitive Sorting

Computing the BBOX of a triangle is in general more
expensive than testing if the BBOX and the tile intersect.
However, in some algorithms for sorting the primitives the
BBOX calculation is performed only once per primitive
while the second step of the BBOX test that checks if the
BBOX intersects with the current tile is performed for ev-
ery combination of primitive and tiles. The second step of
the BBOX test, therefore, has a larger impact on the time
consumption of the sorting scheme than the first step.

In particular, in [2] we have proposed and analyzed
several algorithms for sorting the primitives into bins that
correspond to the tiles. In this paper we focus on the
TWO STEP algorithm which has reasonable performance



BBOX

Tile (T)

Current

4

3

1 2

Figure 2. Triangle to tile BBOX test using 1D
prediction with correlation

and does not require a significant amount of memory in ad-
dition to the scene buffer. This algorithm consists of two
steps. In the first, the BBOX of each primitive is computed
and stored. In the second step, the BBOXs of all primitives
are scanned for each tile and if the BBOX test indicates a
possible overlap, the primitive is sent to the rasterizer.

3.3 Static Bounding Box

The four comparisons required to determine if a BBOX
and a tile overlap can be performed in an arbitrary order.
This gives a total of 24 possible arrangements. However,
not every order produces the same number of comparisons
on average. In this section we discuss two versions of the
static bounding box test that might generate a different num-
ber of comparisons on average.

A tile divides the screen into five, possibly intersect-
ing regions: the tile itself, the region to the east of the
tile (x >= T.MaxX), the region to the west of the tile
(x < T.MinX), the region to the north (y >= T.MaxY),
and the region to the south (y < T.MinY). If a certain test
(comparison) fails, then there is a high probability that the
test in the opposite direction along the same dimension suc-
ceeds. This is because after these two tests there is only
a small region left where the BBOX of a primitive can be
situated.

Fig. 2 illustrates the case in which first the region to the
west of the tile is checked, then the opposite region along
the same dimension (east), then the region to the south, and,
finally, the region to the north. After performing only two
comparisons (the horizontal intersection tests), all primi-
tives that are completely located to the east or west of the
tile are rejected. This usually leaves only a small num-
ber of triangles that require more than two comparisons.
Of course, different orders are also possible (for example,
north, south, west, east). However, assuming that the primi-
tives are equally distributed over the scene, they should pro-
duce the same number of comparisons on average. We refer
to this scheme as STATIC1.

To determine if STATIC1 reduces the average number of
comparisons, we will compare it to a scheme in which the
first and second (and, hence, the third and fourth) compari-
son check different dimensions. For example, one possible
order is west, south, east, north. Statistically, there should
be no difference between the possible orders. We refer to
this static variant as STATIC2.

3.4 Dynamic Bounding Box

As stated before, a tile divides the scene into four re-
gions (five if we include the tile itself). The probability that
a primitive is completely located in the largest region is the
highest. This observation is the basis of our “dynamic” ver-
sions of the bounding box test.

We describe two dynamic schemes. In the first, referred
to as DYNAMIC1, we first check the largest region. There-
after, the opposite direction along the same dimension is
tested. The third test examines the largest region in the other
dimension, and the fourth test checks the remaining region.
The second dynamic version of the bounding box test is re-
ferred to as DYNAMIC2. In this scheme, the comparison
corresponding to the largest region is applied first, then the
comparison corresponding to the second largest region, etc.
The region to the east of the tile is the largest and checked
first, then the region to the south, then the one to the north,
and, finally, the region to the west.

We remark that although these schemes are called dy-
namic, the order in which the comparisons are applied de-
pends only on the tile position and can be determined stat-
ically off-line. For example, for all tiles in the upper left
sub-scene under the main diagonal, the order is east, south,
north, west.

4. Experimental Results

In order to compare the efficiency of the proposed al-
gorithms we used the benchmarking suite proposed in [1].
It consists of 7 components: Q3L, Q3H, Tux, Aw, NAT,
GRAZ, and DINO. The Q3L profile corresponds to a low
resolution (320x240) demo of the Quake III 3D FPS game.
The Q3H profile is based on the same demo as Q3L only
that it uses higher resolution (640x480). Tux is a 3D racing
game (guide a penguin) available on Linux platforms. The
Aw (Awadvs-04) profile is part of the Viewperf 6.1.2 pack-
age. The NAT, GRAZ, and DINO are 3D VRML models for
which “fly-by” scenes were created and traced. The traces
were fed to our modified Mesa library. The Mesa library
performed primitive backface culling and generated lists of
remaining primitives. The list of primitives were sent to our
tile-based accelerator simulator, where different primitive
to tile bounding box tests were used. We used a tile size of



����� ����� �	��
 �	
 ���	� ������� ��� �	�
�

��� ���

��� �

��� ���

 

 � ���

 � �

 � ���

�

��� ���
!#"#$�"�% &(' !)"#$�"�% &�* +),�-)$�./% &/' +0,�-0$�./% &�*

Figure 3. The average number of compar-
isons per primitive for each workload

32x16 pixels, and the window sizes were 320x240 for Q3L,
and 640x480 for the other benchmark suite components.

Fig. 3 depicts, for each workload, the average number
of comparisons per primitive required by each version of
the bounding box test. As expected, the STATIC1 scheme
indeed performs better than the STATIC2 scheme. On aver-
age, across the benchmarks, STATIC1 requires 11% fewer
comparisons than STATIC2. It can also be seen that there is
little difference between the two dynamic versions. This
can be explained as follows. If the largest region has
been checked, then a large part of the second largest re-
gion has also been checked. Suppose, for example, that
the largest region is to the east of the tile and that the sec-
ond largest region is to the south. If the region to the east
has been checked, then the region to the southeast of the
tile has also been checked, while the region to the west
has not. Nevertheless, we observe that DYNAMIC2 per-
forms slightly better than DYNAMIC1. Furthermore, both
dynamic schemes require fewer comparisons than the best
static version. On average, the best dynamic version DY-
NAMIC2 requires 26% fewer comparisons than the best
static scheme STATIC1.

The results above show that by dynamically varying the
order in which the comparisons are performed depending
on the position of the current tile indeed reduces the average
number of comparisons needed to determine that a triangle
does not intersect the tile.

5. Concluding Remarks

In this paper we have described several possible software
implementations of the bounding box test. The static ver-
sions always perform the comparisons involved in the same
order, while the dynamic versions base the order on the po-

sition of the current tile. The experimental results show that
the dynamic scheme in which the comparison correspond-
ing to the largest region is applied first, then the comparison
corresponding to the second largest region, etc., requires the
least comparisons on average (26% fewer comparisons than
the best performing static version).

References

[1] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha. Graal-
Bench: A 3D Graphics Benchmark Suite for Mobile Phones.
In Proc. ACM SIGPLAN/SIGBED Conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES’04) (to
appear), June 2004.

[2] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha. Scene
Management Models and Overlap Tests for Tile-Based Ren-
dering. In Proc. EUROMICRO Symp. on Digital System De-
sign (DSD 2004) (to appear), 2004.

[3] M. Chen, G. Stoll, H. Igehy, K. Proudfoot, and P. Hanra-
han. Simple Models of the Impact of Overlap in Bucket
Rendering. In Proc. ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware, pages 105–112, Lisbon,
Portugal, 1998. ACM Press.

[4] M. Cox and N. Bhandari. Architectural Implications of
Hardware-Accelerated Bucket Rendering on the PC. In
Proc. 1997 SIGGRAPH/Eurographics Workshop on Graph-
ics Hardware, pages 25–34. ACM Press, 1997.

[5] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, B. T. G. Turk, and L. Israel.
Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics
System Using Processor-Enhanced Memories. Computer
Graphics, Vol. 23, No. 3, pp. 79–88, July 1989.

[6] E. Hsieh, V. Pentkovski, and T. Piazza. ZR: A 3D API
Transparent Technology for Chunk Rendering. In Proc. 34th
ACM/IEEE Int. Symp. on Microarchitecture (MICRO-34),
2001.

[7] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski. Chromium: A Stream Pro-
cessing Framework for Interactive Rendering on Clusters. In
Proc. 29th Annual Conf. on Computer Graphics and Interac-
tive Techniques (SIGGRAPH 2002), pages 693–702, 2002.

[8] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Comput. Graph.
Appl., 14(4):23–32, 1994. IEEE Computer Society Press.

[9] C. Mueller. The Sort-First Rendering Architecture for High-
Performance Graphics. In Proc. 1995 Symp. on Interactive
3D Graphics, pages 75–84. ACM Press, 1995.

[10] PowerVR. 3D Graphical Processing (Tile Based
Rendering - The Future of 3D), White Pa-
per. http://www.beyond3d.com/reviews/videologic/
vivid/PowerVR WhitePaper.pdf, 2000.


	Index
	SOC 2004 Home Page
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tuesday, 16 November 2004
	TueAmOR2-Keynote
	TueAmOR3-Industry 1
	TueAmOR4-Invited 1
	TuePmOR1-Industry 2
	TuePmOR4-Routing HW for NoC

	Wednesday, 17 November 2004
	WedAmOR1-Networks on Chip
	WedAmOR3-Invited 3
	WedAmOR4-System-Level Issues
	WedPmOR2-Blocks for SoC
	WedPmOR3-Invited 4

	Thursday, 18 November 2004
	ThuAmOR1-SoC-Mobinet Special Session
	ThuAmPO1-Poster Session: SoC-Mobinet and Related Work
	ThuPmOR1-Invited 5
	ThuPmOR2-IEE award winner session
	ThuPmPO1-Poster Session
	ThuPmOR3-Invited 6


	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Engineering education to qualify for SoC
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Stamatis Vassiliadis
	Ben Juurlink
	Iosif Antochi
	Petri Liuha



