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Abstract— This paper addresses a series of hardware al-
gorithms to reduce the computational overhead to locate
the first rasterization tile position inside the primitive to
be rasterized when the tile-based rasterization adopts the
classical primitive traversal algorithm. These algorithms
can be applied sequentially in a simple-to-complex order for
searching a suitable starting tile rasterization position in-
side the primitive as follows: check if any of the vertices is
in the tile, check if the triangle center of gravity (COG) is
in the tile, recursive tile quadrant division based on COG
attractors, and partial tile boundary scan. The algorithms
were modeled in SystemC at the RT-level and integrated in
a full-fledged OpenGL-compliant hardware rasterizer Sys-
temC model. Simulation results on a benchmark suite con-
sisting of 30 OpenGL applications have indicated that the
throughput penalty is reduced to about 7% at the expense
of about 10% increase in the hardware area when the entire
OpenGL-compliant hardware rasterizer is synthesized in a
commercial 0.18:m process technology.

Keywords— 3D graphics architectures; tile-based rasteri-
zation; embedded systems; digital logic design

I. INTRODUCTION

In recent years, with the increasing demand for graphics
performance on mobile electronics, such as mobile phone
and personal digital assistance (PDA), 2D/3D graphics
computer hardware acceleration has become the next gen-
eration integration target for these devices. However due
to the fact that the available hardware accelerators in mar-
ket are mainly supporting the 2D graphics operations in
hardware, such platforms are not able to provide the per-
formance required by many of the state of the art 3D graph-
ics applications. Thus the lack of explicit hardware sup-
port for 3D graphics operations make mobile platforms
based on such solutions not an effective approach when
3D graphics applications are considered. Moreover, when
such solutions are considered, the explosive increase in
computations associated with the 3D rasterization process

induces an almost unacceptable increase in the power con-
sumption. This high power consumption is brought by
the huge amount of arithmetic computations involved in
the rasterization process and has been a notorious prob-
lem for designing 2D/3D graphics chips for portable de-
vices. To deal with such a problem the designer has to
give special attention to low power design aspects at vari-
ous abstraction levels starting with the general architecture
level and going down to layout and fabrication technology.
The GRAAL project (GRAphics Accelerator) [1] was ini-
tiated in order to provide such a power effective solution
for 3D graphics acceleration. GRAAL is an OpenGL com-
pliant tile-based rasterization engine, which employs ver-
satile hardware-aware techniques. According to the simu-
lation results produced by the GRAAL hardware/software
co-simulation environment [2], the GRAAL engine can
correctly render 3D images produced by an OpenGL ap-
plication on a screen with good expected performance and
power consumption. However, as previous investigations
indicate [1], the utilization of a traditional primitive ras-
terization algorithm [3] in conjunction with the tile based
architecture induces a computational overhead of 40%—
300% associated to the location of an initial rasterization
point inside the tile.

This paper presents a series of hardware algorithms to
reduce the computational overhead associated with the lo-
cation of a first rasterization position in the tile, also called
hit point in the following of this paper. When utilized in
a simple-to-complex sequence, they are Triangle \Vertex
Check, Triangle Gravity Center Check, Quadrant Search,
and Backup Strategy. The primary simulation results on
a set of OpenGL applications have indicated that the over-
head is reduced to 3%-155% with an average of 7%. Hard-
ware synthesis in a typical 0.18um process technology has
suggested a 10% increase in hardware area to the GRAAL
engine.

The rest of this paper is organized as follows. After in-
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troducing the principles of tile-based rasterization and the
problem of the current primitive traversal algorithm in Sec-
tion 11, we present the heuristic algorithms used to solve
the problem in Section Ill. The experimental simulation
results are presented in Section IV, and conclusions are
given in Section V.
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Fig. 1. A typical 3D graphics pipeline.

Il. BACKGROUND

A typical 3D graphics system conceptually consists of
a number of stages that are chained in a pipeline style.
The stages of this graphics pipeline are Application Stage,
Geometry Stage, and Rasterizer Stage, see Figure 1. An
in-depth explanation of these stages is beyond the scope
of this paper and reader can be referred for more details
to a computer graphics book, e.g. [4]. Typically, the ap-
plication stage transforms objects into primitive models,
such as point, line and triangle. The geometry stage is ex-
ecuted based on a 3D graphics library, such as OpenGL,
on a host processor. The main task of the geometry stage
is to generate transformed and projected vertices coordi-
nates, colors, and texture coordinates, called geometrical
data. Given these geometrical data, the goal of the ras-
terizer stage in a graphics accelerator is to assign correct
colors to the pixels in order to render an image correctly.
Generally, the application stage and the geometry stage are
implemented in software, but the rasterizer stage is exe-
cuted in hardware on the graphics hardware accelerator,
due to the computational explosion at this level. In the ras-
terizer stage, fragment attribute values must be generated
for each pixel position within the region of a primitive ob-
ject, often a triangle. A fragment contains all the infor-
mation required to render the surface at the pixel position,
such as color, Z depth, texture coordinates, etc. The half
plane edge function, presented in Equation 1, has been uti-
lized in the GRAAL rasterization engine to produce the

correct stencil of the primitive [3]:
E(z+dz,y+dy) = E(x,y) +0x - Ay — oy - Az (1)

Considering a triangle described by its oriented edge vec-
tors, a position belongs to the interior of a triangle if all its
edge functions computed for that position have the same
sign. Moreover, when a position’s edge function results in
zero, it means that the pixel lies on the edge.

Due to the usage of tiling architecture [4] by the
GRAAL rasterization engine, the computation of the at-
tribute values of the valid fragments (locations inside the
primitive) has to be performed within the region of the cur-
rent processed tile. Any algorithm that guarantees to cover
all pixels of the tile that have a relationship with a trian-
gle can be employed to traverse the triangle. As a prelim-
inary solution, an exhaustive triangle traversal algorithm
has been utilized to cover all the pixels in the triangle by
visiting all the pixels in a tile from the left-bottom corner to
the right-top corner, illustrated in Figure 2. It is easy to fig-
ure out that this algorithm is an inefficient way to traverse
the triangle because it computes the three edge functions
for pixels that may not belong to the triangle and therefore
it has a lot of computational overhead. To speed up the
algorithm, a second solution was to track only positions
inside the triangle by examining the edge function signs
once a hit position was found. However, there is remain-
ing overhead in trying to detect the hit position, for exam-
ple, see the path P;,;; — Qp;;. This computational over-
head accounts to 40%-300% of the primitive rasterization
time. We will introduce in Section 111 various heuristic al-
gorithms meant to speed up the location of the hit point.
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Fig. 2. Exhaustivetiletraversal.

I11. HIT POINT LOCATION ALGORITHMS

To speed up the detection of a hit point in triangle traver-
sal, several heuristic algorithms are presented in this sec-
tion. When summarized in simple-to-complex order, these
algorithms are Triangle Vertex Check, Triangle Gravity
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Center Check, Quadrant Search Heuristics, and Backup
Strategy. The idea is, considering that a triangle may as-
sume any position in relation to a tile boundary, to try hit
point candidates whose coordinates are directly available
or can be derived with simple computations, before falling
back to the straightforward solution depicted in Figure 2.

A. Triangle Vertex Check

Our investigations indicate that an average of 80% of
triangles have at least one vertex inside the considered tile.
Subsequently, triangle vertices can be taken as a promising
candidate for a potential nearby hit point. The strategy to
detect whether a triangle has at least one vertex interior to
the current processing tile is to compare each of the trian-
gle’s vertex with the coordinates of the tile borders. The
comparison is performed as follows:

IF (XzEFT < Tverter < Xr1GET) AND
(Yrop < Yvertex < YBorTOM)) THEN
Thit = Tyertex
Yhit = Yvertexs

where, the couple (zyertex, Yvertez) 1S ONE OF triangle ver-
tex’s coordinates, and the X grr, XrrauT, Yrop,
Ysorroar are the coordinates of the tile borders. Finally,
the (znqt, ynit) is the position of a hit point. The above
comparisons are substituted in hardware by verifing that
the tile index portions of the triangle vertex coordinates
are identical with the tile indices.

B. Triangle Gravity Center Check

Given that there is still a chance that a hit point can-
not be found among the triangle vertices, we have to con-
sider other candidates too. Keeping in mind that the candi-
dates should be obtained without too many computations,
we have studied some other points of a triangle, such as
gravity center, the intersection of triangle bisectors, trian-
gle circumcenter, and orthocenter. From the study, we no-
tice that all of centers, except of triangle gravity center,
require complicated computations.

The triangle gravity center with screen coordinates
(24¢, yge) is computed by the following formulas:

TA+ 2T+ 20

Tge = A 220, @
YA +yYB +yc
oo = AT ©

Only 4 additions and 2 multiplications with the constant
1/3 are required. This doesn’t introduce much overhead
of computation. Moreover, the triangle gravity center pos-
sesses another favorable property that it is interior to the
triangle. Thus even if the gravity center fails to be a hit

point, it can act as an attractor, guiding other approaches
to reach the interior of a triangle.

The investigation on the relationship between a triangle
gravity center and the current processing tile suggests that
more than 50% of gravity center locates in the considered
tile. Therefore, the triangle gravity center is another can-
didate for a hit point.

Same comparing strategy has been employed to check if
a triangle’s gravity center is interior to the processing tile.
The comparison is performed as follows:

IF (Xrerr < 24¢ < XRrrgaT) AND
(Yrop < yge < YBorTOM)) THEN
Thit = Tyertexs
Yhit = Yvertew:

C. Quadrant Search Heuristics

When the triangle vertices and triangle gravity center
fail to indicate a hit point, other approaches must be em-
ployed to continue the search of hit point. The Quadrant
Search Heuristics is proposed for this purpose. The prin-
ciple of the quadrant search heuristics can be described as
follows:

To reduce the searched area partition the tile in
guadrants, select the quadrant closer to the triangle
gravity center and consider the center of such a quadrant
a potential hit point. If no hit point is identified, repeat the
same procedure to the selected quadrant.

The quadrant search heuristics consists of Tile Partition
and Block Scan Algorithm. Intended to be guided by the
triangle gravity center, the tile partition implies the recur-
sive partition of the tile into four identical quadrants and
the selection of one of the four quadrant’s center pixel to
detect if the pixel is inside the triangle. The partition and
testing process continues until the block is small enough
to be scanned in a pixel-by-pixel manner.

C.1 Tile Partition

Different from testing the triangle vertices and triangle
gravity center, tile partition tests certain pixels in the cur-
rent processing tile instead of judging if a point belonging
to the triangle is inside the tile. The tile partition can be
stated as follows:

1. Test the center pixel of the current quadrant (at the first
iteration the current quadrant is the current processing tile)
to detect if the point is inside the triangle;

2. If the pixel is inside the triangle a hit was found and
process is stopped;

3. If the center pixel of the current processing tile is not
inside the triangle, the current quadrant is partitioned into
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four identical quadrants. The quadrant that extends to the
direction of triangle gravity center is selected,;

4. If the chosen quadrant is small enough, the algorithm
is stopped (the Block Scan is initiated), otherwise go to
STEP 1.

To test if a pixel is inside a triangle, the linear edge func-
tion algorithm, discussed in Section 11, is utilized, associ-
ated with the OpenGL point sampling rule [5].

In order to make things clear, the tile partition algorithm is
illustrated by an example, shown in Figure 3. As seen in
the figure, the center pixel of the current processing tile is
the point P1. Since P1 is not in the region of the triangle
AABC the tile is divided into four identical quadrants,
Q1, Q2, Q3 and Q4. The quadrant Q1 is selected as it
is closer to the triangle gravity center of the AABC ly-
ing in the extension area of Q1. Again, the center pixel,
P2, of Q1 has to be checked. Because P2 is still outside
the triangle, quadrant @1 is partitioned into four pieces,
Q1.1,0Q12, Q1.3 and @14, and Q1_1 is selected and its
center pixel P3 is evaluated. P3 is the first valid pixel en-
countered in the process of partitioning and testing so a hit
point was located and the coordinates of P3 are stored in
a register.

Current Tile

Q2

Fig. 3. Anexample of Tile Partition Algorithm.

C.2 Block Scan Algorithm

In case that the current processing tile has been parti-
tioned into quadrants that are small enough whereas a hit
point has not been located, the quadrant can be scanned
incrementally in a pixel-by-pixel manner. The Block Scan
algorithm is meant to locate a hit point inside the ”small”
quadrant. The meaning of "small” depends on the size of
the tile defined. Normally, it means that the block con-
structed by pixels is too small to have a real center pixel,
see Figure 4(b). In this figure, the block covers 8 pixels.
Pixel 1,2,5 and 6 construct the central area of the block, yet
it is hard to tell which pixel is the real center of the block.
In this case such a block, called last block in the reminder
of this report, is considered to be small and passed through

the Block Scan process.

Figure 4(a) illustrate an example of the block scan pro-
cess. According to the figure, the tile partition didn’t locate
a hit point from point P1, P2 and P3. Moreover the po-
sition of triangle gravity center suggests the triangle prob-
ably lies left-top direction of the point P3. Consequently,
block M is selected for block scan in order to detect if a
hit point exists in its area. The scanning trajectory is de-
picted in Figure 4(b). As shown in Figure 4(b), the traver-
sal always starts from the left-bottom corner, origin in the
figure, of the last block. The bottom line is scanned com-
pletely before switching the traversal to the top line. To
evaluate pixels on the trajectory, the same method, as the
Tile Partition uses, is employed.

\

gravity center

Current Tile

(a) Block_scan

Current Tile

(b) Block_scan_trajectory

Fig. 4. Block scan process.

D. Backup Strategy

Some pathological triangles, for example the one de-
picted in the Figure 5, contribute fragment attribute values
to the current processing tile, but the hit point can never be
located by the algorithms discussed in the previous sec-
tions. To reach the triangle, quadrant search intends to
track to the triangle along the direction of the triangle grav-
ity center. However, in case of the one in Figure 5, the hit
point cannot be located, for the triangle intersects the tile
at area N. Therefore, it is necessary to derive some backup
strategies to guarantee that a hit point is located also in the
case of such triangles.
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Fig. 5. Pathologica triangle case example 1.

TABLE|
BORDER(S) TO BE SCANNED FOR EACH KIND OF
PATHOLOGIC TRIANGLE.

Region | | imnm v
Border | LB | L | LT | T

Region | V | VI | VII
Border | RT | R | RB | B

Analyzing the case shown in Figure 5, we find that when
the quadrant search strategy fails to find a hit point, the hit
point position can be located by scanning the border to
which the gravity center is closer. For instance, as shown
in Figure 5, the left border of the current processing tile is
adjacent to the gravity center, and accordingly the hit point
can be found by visiting every pixel on the left border of
the tile.

However another cases should also be taken into ac-
count. In Figure 6, the outer area of the tile is divided
into eight area, named in order from | to VIII. If the tri-
angle gravity center falls into one of the region II, IV, VI
and VIII, scanning the adjacent border is adequate to find
the hit point. Yet scanning only one border is not enough,
if the gravity center lies in the region I, 1ll, V, VII. For in-
stance, in Figure 6 there are two triangles, whose gravity
centers fall in the area I. The Quadrant Searches Heuristics
fails to locate the hit point after scanning the last block.
Backup strategy is initialed to search the hit point. Both
the left and the bottom border are required to be scanned
due to the two possible intersection cases. Table I presents
the border(s) need to be scanned, when a pathologic trian-
gle occurs. In the table, letter L, R, T and B are respec-
tively representing the left border, right border, top border
and bottom border. The Region item suggests the area that
gravity center falls in. Clearly, the pathologic triangles in-
troduce many computational overhead when attempted to
locate the hit point of triangles.

intersection
part N

Fig. 6. Pathological triangle case example 2.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the heuristic algorithms

discussed in Section 111, we have modelled the algorithms
in SystemC at RT-level. Since the functionality of the al-
gorithms is to locate a hit point in a triangle, we named the
functional unit as Hit Point Functional Unit, abbreviated
as HPFU. In this section, we present the experimental sim-
ulation results, after integrating HPFU into the GRAAL
rasterization software/hardware co-simulator [2]. Further-
more, these results are compared to the performance of the
exhaustive algorithm currently adopted by the GRAAL en-
gine.
30 OpenGL applications have been selected as bench-
marks for our simulation. The benchmark suite includes
some general cases, such as the “aapoly” application from
[5], and some extreme cases, such as AWadvs-04 com-
ponent of the SpecViewperf 6.12 benchmark [6]. During
the process of experiments, a set of counters have been
recorded. The performance of the original GRAAL raster-
izer and the modified one with embedded HPFU is eval-
uated according to these counters. The counters recorded
are as follows:

« fragment_in_triangle: recording the number of valid pix-
els in a triangle;

« fragment_hit_and_in_tri: recording the number of pixels
visited from the starting point to a hit point in a triangle,
plus the number of valid pixels in a triangle;

« cycle_tested_hit: the number of cycles for locating a hit
point. This counter is used when the performance of the
new rasterizer is evaluated.

A. Overhead comparison

We have simulated the 30 benchmarks on the modified
engine that embeds HPFU against the original rasterizer,
aiming at finding out the computational overhead cost.
The number of clock cycles spent by the original GRAAL
engine before locating a hit point, is represented by the
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(b) Computational overhead for GRAAL with embedded HPFU.

Fig. 7. Computational overhead comparison.

following formula:

cycles_hit = (fragment_hit_and_in_tri —

fragment_in_triangle) x

cycles_for_each__iteration (@)

where, the factor, cycles_for_each_iteration, represents
clock cycles that are consumed on testing if one pixel is in-
side the triangle. Referring to [1], 4 clock cycles are spent
on testing a pixel. On the other hand, the clock cycles con-
sumed by the modified engine before locating a hit point
is represented by the counter, cycle_tested_hit.

The number of clock cycles spent computing fragment val-

ues is calculated by the formula as follows:

cycles Valid_Pizel = fragment_in triangle x

cycles_compute_fragment

Q)

where the cycles_compute_fragment is the clock cy-
cles cost on computing a pixel’s fragment attribute val-
ues, which is 5 [1]. Consequently, the computational over-
head for one benchmark generated by the original engine
is computed by formula:

overheadl = cycles_hit/cycles_Valid_Pizel  (6)
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while the overhead introduced by the modified engine is
computed by formula:

overhead2 = cycles_tested_hit/cycles_Valid_Pizel
(7)
The average computational overhead for locating a hit
point involved in the original rasterization engine is com-
puted by formula below:

Avg.overheadl = Yeycles_hit/Yeycles_Valid_Pixel
(8)

while the average overhead involved in the modified en-
gine is computed by formula:

Yeycles_tested_hit/
Seycles Valid_Pizel  (9)

Avg.overhead2 =

Figure 7(a) and Figure 7(b) are respectively present-
ing the computational overhead generated by the original
GRAAL and the modified one and the improvement can
be observed. An overhead of 3%—155% with an average of
7% indicates a significant reduction in the computational
overhead to locate a hit point in a triangle, compared with
the average of 1141% from the original GRAAL rasteriza-
tion engine.

The proposed heuristics were implemented as a func-
tional unit (HPFU) at RT-level in SystemC modeling lan-
guage and synthesized employing Synopsys tools in a
commercial 0.18um process technology. The integration
into the GRAAL rasterization engine resulted in an area
increase of about 10% percent.

V. CONCLUSIONS

This paper presented a series of hardware algorithms to
reduce the computational overhead to locate the first ras-
terization tile position inside the primitive to be rasterized
when the tile-based rasterization adopts the classical prim-
itive traversal algorithm. These algorithms can be applied
sequentially in a simple-to-complex order for searching a
suitable starting tile rasterization position inside the prim-
itive as follows: check if any of the vertices is in the tile,
check if the triangle center of gravity (COG) is in the tile,
recursive tile quadrant division based on COG attractors,
and partial tile boundary scan. The algorithms were mod-
eled in SystemC at the RT-level and integrated in a full-
fledged OpenGL-compliant hardware rasterizer SystemC
model. Simulation results on a benchmark suite consist-
ing of 30 OpenGL applications have indicated that the
throughput penalty is reduced to about 7% at the expense
of about 10% increase in the hardware area when the entire
OpenGL-compliant hardware rasterizer is synthesized in a
commercial 0.18um process technology.
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