
1

Performance Evaluation of Interleaved
Multithreading in a VLIW Architecture

S. Suijkerbuijk1,2, P. Stravers2, S. Vassiliadis1, B.H.H. Juurlink1
1Computer Engineering Laboratory, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
2Philips Research Laboratory

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

stephansuijkerbuijk@hotmail.com

Abstract— Interleaved multithreading is a technique in
which the processor starts executing a different task
when the current thread is stalled. However, whereas
different forms of hardware multithreading have been
extensively evaluated in superscalar processors, an evalu-
ation of multithreading techniques in a VLIW architecture
is frequently missing. The objective of this paper is to
determine an efficient method of implementing interleaved
hardware multithreading in the TriMedia and evaluate
the performance. The TriMedia is a multimedia VLIW
processor designed by Philips semiconductors. Currently,
multithreading is not implemented in the TriMedia. First,
the details of the used interleaved multithreading method
are given. After that, the architectural changes that are
made in to cycle-accurate simulator of the TriMedia are
described. Then, the various test result are presented.
Finally we discuss the conclusions that can be drawn from
the simulation results.

Index Terms— Interleaved multithreading, VLIW pro-
cessor, TriMedia

I. INTRODUCTION

Interleaved multithreading [1] is a technique in which
the processor starts executing a different task when
the current thread is stalled. The TriMedia [7] is a
multimedia VLIW processor designed by Philips semi-
conductors. The objective of this research is to assess
the performance potential of a TriMedia enhanced with
interleaved multithreading.

A cycle-accurate simulator of the TriMedia was
modified to support interleaved multithreading. Every
hardware-thread capable of running a task has its own
general-purpose registers. To limit the increase in chip
size, the hardware-threads share the data and instruc-
tion caches. Another micro-architectural modification
prevents fetching a cache-line that has already been

requested by another hardware-thread, but has not arrived
yet.

Thread switches occur when there is a primary cache
miss and threads are scheduled in a round-robin manner.
Without software changes, there must be a maximum
amount of time a hardware thread may be active, since
otherwise a thread may hold the CPU indefinitely. This
amount of time is called the time quantum. We assume
that the pipeline register are replicated, which allows to
perform thread switches in one cycle.

The performance of the enhanced has been measured
using two different mpeg2 decoders. The results show
that the time quantum should be carefully chosen. If it is
too small, there is too much thread switching overhead. If
it is too large, the original TriMedia performs even better
than the multithreaded one. In addition, the results show
that the multithreaded processor decreases the number
of cycles by at most 25

Concluding, we have identified what the improvement
would be if interleaved multithreading would be imple-
mented in the TriMedia. The performance benefit is not
sufficient to warrant implementing this technique. The
advantage of changing the software should be investi-
gated in order to fully assess the performance potential
of interleaved multithreading.

This paper is organized as follows. In Section II we
briefly describe different hardware multithreading tech-
niques and the TriMedia processor. Section III discusses
how multithreading can be integrated in the TriMedia
VLIW processor, describes which micro-architectural
structures need to be duplicated and which can be shared,
and introduces three buffers that improve performance.
Simulation results are presented in Section IV and con-
clusions are drawn in Section V



2

II. BACKGROUND

A. Multithreading in Hardware

Throughout the years a trend can be observed that
both the processor and the memory chips become faster.
However, the growth of the processing power exceeds
the growth of the speed of memory. This causes what
is called thememory gap. The processor requires data
faster than it can access it. With multiprocessors this
data can even reside in remote memory locations with
an even bigger latency. The memory gap has become a
performance limiting factor.

Various micro-architectural techniques to bridge the
memory gap have been proposed and implemented.
Hardware multithreading is one of these techniques. All
hardware multithreading schemes assume that the work-
load of a CPU consists of several independent tasks. This
can be different programs or parallel threads of a single
program. Implementing a hardware multithreading tech-
niques requires significantly more micro-architectural
changes than some other solutions to bridge the memory
gap as stated in [2]. However, since the memory gap con-
tinues to increase, multithreading has become increas-
ingly worthwhile to implement. Besides this trend, some
changes in the processor micro-architecture for other
memory latency tolerance techniques were expandable
for multithreading and the research on multithreading
made it more efficient. In [2] it was concluded that
multithreading or multiple contexts can increase perfor-
mance significantly, even with respect to other memory
latency tolerance techniques. Recentlysimultaneous mul-
tithreading or hyper-threading has been implemented in
the commercial Intel Xeon processor [6].

III. HARDWARE MULTITHREADING TECHNIQUES

Opposed to simultaneous multithreading, interleaved
multithreading [1] has to switch to another task as de-
picted in Figure 1. Depending on the switching technique

Fig. 1. The workload of a multithreaded processor

and implementation, a range of possibilities exist. If we
take cycle-by-cycle interleaving, such as implemented in
the HEP [3], the switching penalty must be minimal
(essentially zero), since there is a thread switch every
cycle. To use this method efficiently there must be as

many executable tasks as there are pipeline stages. Every
cycle a new instruction will be fed into the pipeline. With
a long pipeline, the number of executable tasks can be
smaller than the number of stages. This will result in
empty unused pipeline stages. Another method is called
interleaved multithreading [10], also referred to as block
interleaving. Opposed to cycle-by-cycle interleaving, in-
terleaved multithreading does not execute tasks for a
fixed amount of cycles. Instead the processor executes
another task if the data needed by a task is predicted
to have a significantly long latency. To determine what
a significantly long latency is, the latency needs to be
compared to the cost of a thread switch. If we can predict
that the latency is larger than the cost of switching to
another task, then the processor will use at least some
of the unused cycles to execute another task when we
switch at that moment.

Whether a load or store will produce a cache miss is
unknown when the instruction is fed into the pipeline. At
the time the decision is made to switch to another task,
the pipeline will contain instructions that are after the
instruction that causes the switch. We can let the pipeline
execute until it is empty. This flushing method has the
disadvantage that the switch will cost extra cycles, since
the pipeline is completely empty and unused when the
switch is made. Alternatively, if we can quickly, in
one cycle, store all pipeline registers the chip size will
increase, but the cost of a thread switch dereases. The
pipeline can be used again when the task is re-activated.

A. TriMedia Processor

The Trimedia is a VLIW multimedia processor devel-
oped by Philips Semiconductor [7]. A VLIW processor
can execute multiple instructions simultaneously if they
are independent and free of structural hazards. A VLIW
compiler guarantees a functional correct distribution
of different executable instructions. The TriMedia is
a VLIW processor with 5 instruction slots with the
capability of being a stand alone processor as well as
a co-processor for multimedia applications. Multimedia
instructions have been added to the instruction set to
optimize the TriMedia for multimedia applications such
as MPEG2 encoders and decoders.

This research is based on the TM1000, which is an
TriMedia instance. The TM1000 has a data cache of
16KB and an instruction cache of 32 KB. Both caches
are 8-way set associative with a block size of 64 bytes
and employ the Least Recently Used (LRU) replacement
algorithm. A high bandwidth of 400 MB/s supplies the
data-streams to the processor to do its calculations.

This research uses the TM1000 as a starting point, but



3

the conclusions can be easily extended to other VLIW
processors.

IV. I NTEGRATING MULTITHREADING IN THE

TRIMEDIA

A. The Implemented Multithreading Technique

Before we can integrate multithreading in the TriMe-
dia, we need to selet the type of multithreading we are
going to implement. Simultaneous multithreading [4], [5]
is generally faster than interleaved multithreading, be-
cause it eliminates horizontal waste (unused instruction
slots in a cycle) as well as vertical waste (no instructions
are issued during a cycle, because execution is stalled),
while interleaved multithreading eliminates only vertical
waste. This comparison is made assuming that both
implementations are capable of running the same number
of tasks. Simultaneous multithreading, however, is de-
signed for superscalar processors. In a VLIW processor
conflict of resources might occur, because of unknown
and unpredictable latencies of cache misses at compile
time. This makes interleaved multithreading the only
possible choice.

In interleaved multithreading only one of the available
tasks is executing at any time. When a switch occurs,
the processor begins or continues executing another task.
Different types of interleaved multithreading exist. There
are two possibilities. The switch is performed at fixed
intervals or at variable intervals. The already mentioned
HEP uses a fixed interval of one cycle. In this specific
example we need as many task as pipeline stages. This
is not usually the case, which makes cycle-by-cycle
interleaving not a suitable choice for interleaved mul-
tithreading in a VLIW architecture. even if we increase
the length of the interval we will get the problem that
the latency of the cache miss appears as empty pipeline
stages. The object of this research is to hide these
latencies. Therefore the choice is to employ variable
intervals.

The ideal moment to switch to another task is just
after data is requested that does not reside in a nearby
cache. To approach this a task switch is performed when
there is a first level cache miss. However, when the
data resides in the second level cache, the switch might
cost more cycles than the amount of cycles needed to
bring the data to the processor. In [11] has been given
an implementation of interleaved multithreading with a
switch cost of only one cycle. We take this number in
our simulations.

When we switch to another task we take the next task
in line using the round robin method, returning to the first
task when we switch from the last task. The possibility

of priorities has been set aside. The overhead increase
with task priorities and the danger arises that a task is
never executed. Furthermore, adding priorities to task
requires compiler changes, which is out of the scope of
this research. The simplicity of the round robin method
prevails upon the advantages of priority scheduling.

B. Top Level Architecture

The TriMedia can execute only one task at the same
time. To create the capability of interleaved multithread-
ing, the TriMedia requires additional hardware. The
TriMedia needs to store the state of every task when this
task is not active. In order to achieve this several parts of
the micro-architecture need to be duplicated and some
not.

The data and instruction caches of the TriMedia will
not be duplicated for every task that can be handled in
parallel, hereafter calledhardware thread. Consequently,
every hardware thread needs to share the caches with
all the other hardware threads. The disadvantage is that
duplicating the caches is usually faster. The advantage
that motivates the decision not to duplicate is the chip
size. Duplication of the caches causes an increase in
chip size that is too large to justify multithreading on
a processor instead of using multiple processors.

Every general purpose registers will be duplicated for
every hardware thread. The TriMedia has 128 registers
and the compiler assumes this number. Changing the
number of registers of hardware thread will necessitate
in changes to the compiler, which is out of the scope of
this research.

The functional units do not have to be duplicated. At
any time only one hardware thread is active and requires
functional units. When a complex functional unit that
requires more than one cycle is active and a switch
occurs,the next hardware thread may issue operations to
this functional unit. But the first result predicted by this
functional unit is part of the previous hardware thread.

The internal MMIO (Memory Mapped Input Output)
registers are fully duplicated. These registers contain
some values which may be shared between hardware
threads, but the size of these registers is small. Therefore
the easy solution of duplication is preferred. In case of
the TriMedia, the interrupt vectors reside in the MMIO
space. In other VLIW micro-architectures these might
need to be duplicated specifically.

Furthermore the entire state of the TriMedia must be
stored in order to be able to continue the task at the
moment it stopped due to a switch. This depends on the
method of implementation of interleaved multithreading.
A store of the complete pipeline can offer a quick switch,



4

whereas a slow switch may result in a smaller chip
when flushing the pipeline. In this research we assume
a one cycle switch, which means total duplication of the
pipeline registers.

C. Cache Structures

The hardware threads share the data and instruction
caches, which has serious effect when considering cache
coherency and speed. Coherency is achieved if the fol-
lowing three conditions are met [9]:

1) If there is first a write to a location and then
a read by the same processor/hardware thread
to the same location, the read should return the
value written by that processor/hardware thread,
provided that there are no writes to that location
by other processors.

2) When there is a write to a location, the read from
that same location by another processor/hardware
thread must return the written value if there is
sufficient time between the instructions.

3) Writes to the same location are seen by all other
processors/hardware threads in the same order.

These rules apply to a multiprocessor environment and
to a multithreading environment if the software views
the hardware threads as separate virtual processors. The
first condition is handled by the cache controller, which
handles these request. A write with low priority can be
handled at a later time than the read with higher priority,
but issued after the write. However, the cache controller
must make sure that the read does read the value that
was changed by the write instruction.

The second requirement is a bit trickier with multi-
threading. When there is a write hit to a location in the
cache, there is no switch and thus no other hardware
thread reads the same address before the write is finished.
However, when there is a write miss in the cache,
there can be a thread switch and the possibility arises
that the next hardware thread reads the same address.
Thus we must force the hardware thread that made
the write request to finish first, before the read of the
other hardware thread is executed. This is done using
the pending buffer which will be explained in the next
section.

The data that is already fetched and/or used by one
hardware thread, can be accessed quickly by another
hardware thread when using shared caches. If one thread
wants to access a cache line, another hardware thread
might have invalidated this line to replace it with another
cache line. This is called cache pollution. We cannot
prevent that from happening completely, because of
the limits to the cache sizes, but we can decrease the

probability of cache pollution by using a reasonable
cache size and by using a global clock for implementing
LRU. If one hardware thread uses a cache line, the other
hardware threads will know that this cache line has been
used recently.

D. Buffering

In this section we will introduce thepending buffer.
The principle is simple, the pending buffer prevents other
hardware threads to request the same cache line. The bus
interface that connects the multithreaded CPU does not
have to request the same cache line twice. The pending
buffer decreases unnecessary traffic on the bus interface
and guarantees cache coherence.

The pending buffer consists of sets, tags and valid bits
as shown in Figure 2. The pending buffer is shared be-
tween all the hardware threads on the same multithreaded
CPU. Every hardware thread has its own group of set,
tag and valid bit. If a hardware thread incurs a cache
miss, be it in instruction cache or data cache, it will
put the corresponding set and tag in the pending buffer
and changes the corresponding valid bit to TRUE. If
another hardware thread experiences a cache miss, it
checks the entire pending buffer, which has as many
entries as hardware threads. If it finds the corresponding
set and tag in the buffer, it does not make the request
to fetch the data. Instead it informs the hardware thread
that requested the cache line that it waits for it too. When
the data arrives in the cache, the original hardware thread
that stalled first, is woken up. It continues computing as
normal, but it also checks if any hardware thread was
waiting for the same cache line. If it finds that to be
true, it wakes-up the other hardware threads.

Fig. 2. The pending buffer. Every hardware thread has a dedicated
entry to put its line that is being fetched. We need to search the entire
buffer if we want to see if a line is pending.

This way of communication is of equal importance
when there is a copy back situation. In this situation
a hardware thread invalidates a cache line containing
addressA to make room for another cache line that
it needs. After a switch another hardware thread may
ask for that line. But the line containing addressA is
not in the cache since it was invalidated. Therefore the



5

line must be fetched, but the copied back value must
be found. In order to guarantee that the read finds the
copied back value, a copy back buffer is introduced,
which is similar as the pending buffer. In this buffer
not the address of the line that is fetched is stored, but
the address of the copied back line. A read checks if the
address of the line is in the copy back buffer and does
not continue if it finds that address. A switch follows.
The read can only finish if the copy back is successfully
completed and the copy back buffer is cleared with
the address. Then the line that was copied back must
be fetched again. Another possibility is to store the
line which is copied back and supply it to the second
hardware thread if it requests it before the completion of
the copy back. This causes much more overhead, since
we do not know if the data is still valid, or requested by
other resources.

The bus interface connects the TriMedia to main
memory. The processor sends its requests through the
bus interface and gets its data. The bus interface is
limited to one outstanding request, which will become
a problem when multithreading is implemented, because
a multithreaded CPU can have multiple outstanding re-
quests. The maximum is equal to the number of hardware
threads. This problem can be solved with multiple bus
interfaces, a memory subsystem buffer (mss buffer) or a
combination of both. This is illustrated in Figure 3. The

Fig. 3. Three possibilities of bus interfaces to the main memory in
5 threaded CPU. 1: Single Bus Interface, 2: Variable Bus Interface,
3: Full Connected Interface (no mss buffer needed).

first possibility uses only the mss buffer, which sequen-
tializes every request from the multithreaded processor.
The disadvantage of this approach is the possibility that
all hardware threads are making request using the bus
interface. Every request will be handled sequentially,
and thus it will take a long time for every request to
be handled. The advantage is the single bus interface.
Multiplying the bus will result in a greater need for
bandwidth of for instance the main memory.

The second option is useful if the bandwidth of
the main memory cannot be increased as much as the

number of hardware threads, but it can be increased.
The mss buffer will sequentialize every request but the
requests will be divided among the bus interfaces.

The last solution is a full connected bus interface,
without mss buffer. This is the fastest solution. However,
the probability that all connected devices, such as the
main memory, are able to multiply their bandwidth
dramatically is small.

E. Quantum Time Expiration

In this implementation of interleaved multithreading
switches between hardware threads occur at first level
cache misses. The advantage is that the knowledge that
a switch needs to be performed is quickly accessible.
This decision will result in switches when there is a
second level cache miss, with relative few stall cycles.
To compensate for this the implementation of the switch
is made to only cost one cycle, which is achieved in [11].

The first level cache miss is not the only reason to
switch. It can occur that a hardware thread enters a
continuous loop because of synchronization mechanisms
busy waiting, which will be explained in detail in the next
section. One hardware thread may be running a task that
waits for a reply from another task, running on the same
CPU, but on a different hardware thread. In this case the
task just waits for the reply in a continuous loop, but
the other task will never become active, since there is
no first level cache miss.

To prevent this we must either implement aquantum
time expiration, a fixed maximum number of cycles a
hardware thread may be active before a switch must
follow or we must identify all situations when a switch
needs to be forced. The latter seems nearly impossible.
Detecting a continuous loop can be done if the loop
body is not too large by storing and checking the
current instruction address. However, the loop body may
become too large, which is why a quantum expiration
is implemented. The switch algorithm is illustrated in
Figure 4.

Ideally the value of the quantum expiration is a
huge number of cycles. Every time a switch is forced
because of quantum time expiration (QTE), cycles are
unnecessary wasted. Either the switch is too early and
the hardware thread is just interrupted while performing
its tasks or the switch is late and the continuous loop has
been executed a few times. It depends on the number of
such busy waiting loops. If they are many, then the QTE
must be small. If a busy waiting loop is an exception,
then the QTE must be heightened. The optimal value
must be determined by performing experiments.



6

Fig. 4. Events that cause thread switches in the multithreaded
TriMedia.

F. Switching During Synchronization Between Hardware
Threads

To guarantee vertical exclusion, a synchronization
method must be implemented. In the TriMedia this is
achieved using two instructions: load link (LL) and store
conditional (SC).

These instructions can simulate an atomic operation or
to acquire a semaphore. In the code below an example
of an atomic add simulation is given for the TriMedia.
The SC operation fails if the memory location which
is loaded by the LL instruction is changed by another
processor. Therefor a switch when the task is in a LL
and SC loop is dangerous for the functionality for the
atomic add simulation. Every switch between LL and
SC instruction will automatically guarantee a fail of the
SC instruction in the future, resulting in a second pass
of the LL and SC loop.

LOOP: IF R1 IIMM (LOOP)→ R68
IF R1 LL 32 R64→ R65
IF R1 IADDI (1) R65→ R66
IF R1 SC32 R64 R66→ R67
IF R67 IJMPI(NEXT)
IF R1 IJMPF R67 R68

G. Software Enhancements

Though this research focuses itself on hardware
changes, this section deals with software enhancements
that could improve the performance of interleaved mul-
tithreading.

At least the bootcode of the TriMedia has to be altered.
All the hardware threads try to get their individual
number, but this does not happen at the same time.
To make sure that every hardware thread has accessed
its number to identify itself an intentional cache miss
or switch has to be performed after a hardware thread
has acquired its CPU number. Changes can be made in

the compiler to speedup performance. Every time the
compiler recognizes that a switch needs to be forced
it can add an intentional miss, which forces a switch.
As said before, not every forced switch can be recog-
nized, but adding these changes will make the optimal
QTE value higher, which will improve performance. We
cannot remove the QTE completely, unfortunately. This
intentional miss can be implemented using two existing
instructions, who invalidates a line and then fetches
the same line. A second option is to add a complete
instruction to the existing instruction set. This option
has the disadvantage that additions in hardware must be
made and compatibility is lost. These disadvantages do
not way against the gain of one cycle per forced switch
using existing instructions. A final change could be an
adjustable QTE for optimal performance per program.

V. DESIGN SPACE EXPLORATION

CAKE is the abbreviation of Computer Architecture
for a Killer Experience. CAKE is a multiprocessor archi-
tecture [8]. It addresses the need scalable architectures.
This means that an interconnection network connects
multiple processors and peripherals and other tiles with
the same configuration. We used a CAKE cycle accurate
simulator to simulate the system on chip (SoC). It had a
adjustable number of MIPS, coprocessors and TriMedia.
Only the last option was altered to have the capability
of interleaved multithreading. Two different MPEG 2 de-
coders (opt-mpeg2dec andnormal-mpeg2dec) were used
as benchmarks. Opt-mpeg2de is an MPEG 2 decoder
optimized for the TriMedia, whereas normal-mpeg2dec
is an off the shelve MPEG 2 decoder. Simulations were
run using different cache sizes, QTE and the number
of hardware threads with bus interfaces. The number of
hardware threads is focused on two and three hardware
threads, because of the limitations of the simulator.

Figure 5 shows the results for a multithreaded TriMe-
dia running the program opt-mpeg2dec. This TriMedia
has the original cache size of 16 KB for the data cache
and 32 KB for the instruction cache. We see an optimal
value of around 90 cycles for the QTE. This value is very
small, which shows that there are many occurrences of
busy waiting loops. With an ideal QTE of infinite, this
value is disappointing and justifies additional software
enhancements to detect loops at compile time. If the QTE
is set at a value too small or too high, the performance
of the multithreaded TriMedia is even worse than the
original one without the multithreading overhead.

The normalized cycle count is disappointing as well,
with a maximum gain less than 5 percent. These re-
sult must be seen with the note that the program opt-
mpeg2dec had a good CPI to begin with, which leaves



7

1 Thread

2 Threads 

1 Bus Interface

2 Threads 

2 Bus Interfaces

3 Threads 

1 Bus Interface

3 Threads 

2 Bus Interfaces

3 Threads 

3 Bus Interfaces

95%

96%

97%

98%

99%

100%

101%

102%

103%

104%

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

QTE (cycles)

N
o

rm
a
li
z
e
d

 C
y
c
le

 C
o

u
n

t

Fig. 5. The relative change in cycle count, when using different
implementations of multithreading, for the program opt-mpeg2dec as
a function of the QTE.

little room for improvement. Another conclusion we can
draw from figure 5 is that a third bus interface with three
hardware threads is not a significant improvement.

Further experiments with smaller cache sizes gave
more improvement, than seen with the original cache
size, as one may expect. A maximum gain of around 15%
was found with a data cache of 8 KB and an instruction
cache of 16 KB. However the optimal value of QTE
reduces, which indicates an even worse effectiveness of
multithreading. If we increase the cache sizes the results
show an even worse scenario, with the original TriMedia
performing almost always better than the multithreaded
version.

The program normal-mpeg2dec is an off the shelve
MPEG 2 decoder, which has more room for improvement
than the program opt-mpeg2dec. As with opt-mpeg2dec,
we first run a simulation with the original parameter. The
results of this test are shown in figure 6. As supposed
to the optimized MPEG 2 decoder, this version has a
substantial improvement with 2 hardware threads and
2 bus interfaces: 3% against 27%. This increase in
effectiveness in also seen in the heightened optimal value
of QTE. From 90 cycles to a value of around 140. Keep
in mind that this is still low, compared to the cycle
count of around 639 million of the program. We also
see that the performance is less dependent on the QTE
than when program opt-mpeg2dec was executed. Here
the line inclines less steep after reaching the optimal
QTE.

Decreasing the cache size does not aid the multi-
threading in this program. Apparently multithreading is
not capable here to use the additional cache misses to
increase its effectiveness. Doubling the cache sizes has
only a small beneficial effect.

1 Thread

2 Threads 

1 Bus Interface

2 Threads 

2 Bus Interfaces

70%

75%

80%

85%

90%

95%

100%

1
0

5
0
9
0
1
3
0
1
7
0
2
1
0
2
5
0
2
9
0
3
3
0
3
7
0
4
1
0
4
5
0
4
9
0
5
3
0
5
7
0
6
1
0
6
5
0
6
9
0
7
3
0
7
7
0
8
1
0
8
5
0
8
9
0

QTE (cycles)

N
o

rm
a
li

z
e
d

 C
y
c
le

 C
o

u
n

t

Fig. 6. The relative change in cycle count, when using different
implementations of multithreading, for the program norm-mpeg2dec
as a function of the QTE.

VI. CONCLUSIONS

In this paper we have evaluated the efficiency of
implementing interleaved multithreading in the TriMe-
dia. Several micro-architectrural changes are required to
enhance the TriMedia with the capability of interleaved
multithreading. Caches and functional units need to be
shared and the general purpose registers and MMIO need
to be duplicated. Furthermore, the state of the TriMedia
has to be stored after a switch to another hardware thread
to be able to continue from the point the switch was
made. This means either copying the pipeline or flushing
it, which is slower.

We have proposed to use a pending buffer. This buffer
guarantees that two or more hardware threads do not
request the same cache line. Furthermore there is a copy
back buffer that ensures that the copy back of a line in the
cache is finished before that line is requested again by a
hardware thread. The third buffer is optional and depen-
dent on the choice of implementation. Every request for
data is sent to main memory or other locations through
a bus interface. With multiple hardware threads we can
have multiple outstanding requests simultaneously. If we
do not want to add more bus interfaces, we use a socalled
memory subsystem buffer (mss buffer) to sequentialize
the requests on the bus interface.

Switches between hardware threads occur in a round
robin method at every first level cache miss and at every
quantum time expiration (QTE), whichever comes first.
The QTE is a maximum amount of cycles a hardware
thread may be active to exclude the possibility of a
hardware thread being active all the time.

The simulation results have shown that using inter-
leaved multithreading only provides a significant per-
formance improvement when a program is executed



8

that is not optimized for the TriMedia processor. This
improvement is not very high as the QTE has a relatively
low value, while a high value is desired. Interleaved mul-
tithreading can improve VLIW processors with generic
programs, but the hardware changes that need to be
made and the increase in chip size, make implementation
efforts not worthwhile. We, therefore, recommend further
research in changing the software/compiler to enhance
the performance of interleaved multithreading in VLIW
processors.

REFERENCES

[1] Weber, W. Gupta, A., “Exploring the Benefits of Multiple
Hardware Contexts in a Multiproessor Architecture: Pre-
liminary Results,” Proc. 16th International Symposium
on Computer Architecture (ISCA’89) , (1989): 273–280.

[2] Gupta, A. Hennesey, John. Ghacrachorloo, Kourosh.
Mowry, Todd and Weber, Wolf-Dietrich., “Comparative
Evaluation of Latency Reducing and tolerating Tech-
niques,” Proc. 18th Annual Symposium on Computer
Architecture, (May 1991): 254–263.

[3] Smith, Burton J., “Architectures and Applications of the
HEP Multiprocessor Computer System,”SPIE, (1981):
298:241–248.

[4] Tullsen, D.M. Eggers, S.J. and Levy, H.M. “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,”Proc.
20th Annual Symposium on Computer Architecture ,
(June 1995): 278–288.

[5] Culler, David E. and Pal Singh, Jaswinder.,Parallel
Computer Architectures, a Hardware/Software Approach,
(Morgan Kaufmann 1999).

[6] Marr D. Binns, F. Hill, D. Hinton, G. Koufaty, K.
Miller and J. Upton M., “Hyper-threading technology
architecture and microarchitecture: a hypertext history.”,
Intel Technical Journal , (February 2002).

[7] Rathnam, Selliah and Slavenburg, Gert., “An Architec-
tural Overview of the Programmable Multimedia Proces-
sor, TM-1,” Proc. Compcon ’96 , (February 1996).

[8] Stravers, Paul and Hoogerbrugge, Jan., “Homogeneous
Multiprocessing and the Future of Silicon Design
Paradigms,” Proc. International Symposium on VLSI
Technology, Systems and Applications (VLIS-TSA) 2001
, (April 2001): 184–187.

[9] Hennessy, John and Patterson, David.,Computer Ar-
chitecture, a Quantative Approach (Morgan Kaufmann
1996).

[10] Kreuzinger, Jochen and Unger, Theo., “Context Switch-
ing Techniques for Decoupled Multithreaded Processors,”
Proc. Euromicro’99 , (September 1999): 248–251.

[11] Nuth, Peter R. Dally and William J., “A Mechanism for
Efficient Context Switching,”International Conference
on Computer Design , (October 1991): 301–304.


