
3D Graphics Tile-Based Systolic Scan-Conversion
Dan Crisu∗, Stamatis Vassiliadis∗, Sorin D. Cotofana∗ and Petri Liuha†

∗Computer Engineering Laboratory, EEMCS, Delft University of Technology, 2628 CD Delft, The Netherlands
E-mail: {dan, stamatis, sorin}@ce.et.tudelft.nl

†Nokia Research Center, Visiokatu-1 SF-33720, Tampere, Finland
E-mail: petri.liuha@nokia.com

Abstract— A 3D graphics systolic scan-conversion unit is pre-
sented that solves existing problems associated with tile-based
hardware rasterization algorithms. In our proposal no searching
overhead is needed to find the first hit position inside the primi-
tives. Furthermore “ghost” primitives are handled efficiently with
a small constant delay irrespective of the primitive size. Finally,
hit positions (communicated in a spatial pattern to increase
texture cache hit ratios) can always be mapped to different
memory banks in the Z-buffer or color-buffer breaking the “read-
modify-write” dependency associated with depth test and color
blending. Hardware synthesis in a commercial 0.18µm process
technology has indicated that the hardware implementation
requires an area of 269964µm2, it can be clocked at a frequency
of 200MHz and consumes 33mW. The rendering and the fill rate
achieved are 2.4 million triangles/s and 460 million pixels/s for
graphics scenes with typical average triangle area of 160 pixels.

I. INTRODUCTION

Tiling or chunking architectures [1] were proposed as a
way to save memory bandwidth on frame buffer accesses,
and to counteract the huge increase in storage of full-scene
antialiasing. In a tiling architecture, the screen is divided
in a number of non-overlapping regions, or tiles, which are
processed serially. For every frame, primitive geometry is
sorted first by screen location and dumped into one or more
bins, one bin per tile. Geometry that overlaps a tile boundary
is referenced in each tile it is visible in. When all the primitive
geometry has been specified, it is rendered from bin N to the
tile N before moving to the tile N + 1. The advantage of the
tile-based architectures is that all the data (colors, depth) can
be maintained in on-chip tile-sized buffers.

Although many algorithms [2][3], based on edge func-
tions [4], were proposed to rasterize efficiently primitives
on traditional full-screen architectures, to the best of our
knowledge none was proposed for efficient rasterization in
a tile-based architecture. All of the proposed algorithms are
based on the following conceptual algorithm: while not all
the positions inside the primitive are exhausted do 1) save the
rasterization context, 2) move to a new rasterization position,
3) test the edge functions value for that position to see if the
position is a hit, 4) if it is inside communicate this hit position
to the pixel processing pipelines and update the rasterization
context else restore the rasterization context, 5) based on
the edge functions computed earlier try to predict a new hit
position. Computationwise, the main difficulty in tile-based
rasterization with this algorithm is to find the first hit position
in the to be rasterized primitive. To establish the overhead

needed to find the first hit position we performed experiments
with heuristics. We included testing that determines if any
of the primitive vertices or the primitive gravity center can
be considered the starting rasterization position or the hit
point. Our experiments indicated that the overhead can be
between 50%-300% of the primitive rasterization time. In
addition, primitives are assigned to tiles in the software driver
based on the test results of the primitive bounding box and
its relationship with the tile boundary. Consequently, there is
always overhead associated with ”ghost” primitives (depicted
in Figure 1), which are primitives that are assigned to the
current tile when they do not intersect it. In full-screen
rasterization this overhead is inexistent due to the fact that
a starting point inside the primitive can always be found, e.g.,
the gravity center. Apart of the overhead associated to locating
the hit position, the traditional full-screen rasterization adapted
for tile-based rasterization also exhibits random primitive pixel
rasterization order. As several studies [5][6][7] indicate, the
primitive pixel rasterization order is crucial for low-cost tile-
based architectures that don’t have dedicated texture memories
(pull texture architectures). Also, a certain primitive pixel
rasterization order may allow the interleaving of memory
banks in the on-chip tile frame buffers. If this interleaving can
be achieved then the dependencies introduced by the “read-
modify-write” operation associated with the depth test and
color blending can be removed. As a result the throughput
of the system can be increased.

To address the previously mentioned drawbacks and open
issues, we propose an efficient systolic primitive scan-
conversion hardware unit to accelerate primitive rasterization
in 3D graphics tile-based rasterizers. The main contributions
of our proposal to tile-based rasterization can be summarized
by the following:

• the first hit position inside the primitives is found with
no overhead,

• “ghost” primitives are efficiently handled, because they
are discarded after a small constant delay irrespective
of the primitive size. This contrasts with the exhaustive
search of the tile boundary required by tile-based raster-
izers that adapt the full-screen rasterization approach.

Additionally, our proposal imposes a rasterization order with
the following benefits:

• hit positions are communicated in a spatial pattern that
has the potential to increase the hit ratio of texture caches

5170780386221/04/$20.00 ©2004 IEEE

➠ ➡

Only Bounding Box Overlap

No overlap

Bounding Box & Triangle Overlap
y

T(A,B,C)

x

0

1

2

0 1 2 3

Bounding Box of T

B

A

C

Fig. 1. “Ghost” triangle for tiles (0, 2), (1, 0), (2, 0), and (2, 2).

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

x

y

Quad 11 (Group 10, Block 00)

Group 01 (Block 00)

Block 00

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

8

8
Pixel

Fig. 2. Proposed pixel rasterization order in tile.

in pull texture architectures;
• hit positions can always be mapped to different memory

banks in the Z-buffer or color-buffer breaking the “read-
modify-write” dependency associated with depth test and
color blending.

The rest of the paper is organized as follows. The systolic
primitive scan-conversion subsystem is described in Section II.
In Section III, hardware implementation results are presented.
Finally, in Section IV, the conclusions are drawn.

II. SYSTOLIC PRIMITIVE SCAN-CONVERSION

For clarity of explanation and without loss of generality we
assume a standard QVGA display size (with a resolution of
320 × 240) used in mobile terminals, divided in tiles with a
size of 32 × 16 pixels. The screen coordinates x and y of
the primitive vertices for a QVGA display are represented
as unsigned fixed-point numbers in the format 9.4 (meaning
9 integer bits and 4 fractional bits). We assume that the
arithmetic computations are performed in two’s complement
notation.

The quest to an efficient hardware algorithm for rasterization
has to start from finding a suitable pixel rasterization order.
In Figure 2 the pixel grid of the tile around the origin of
the tile coordinate system is depicted and a proposed space-
filling path indicated with arrows starting from the origin is
presented. Space-filling paths are known to improve the texel
coherency generating high hit-ratio in texture caches [1]. In
addition, if 2×2 regions of fragments can be generated during
rasterization they can be mapped on different memory banks

Quad01 10 1100
Pixel Pixel Pixel Pixel

Group10 1100 01
Quad Quad Quad Quad

Priority decreasing

Fig. 3. Pixel and Quad coding.

A, B, C, D. Supposing that the shape or stencil of a triangle
has been already coded in a memory representing the bi-
dimensional tile, now hit locations have to be forwarded to
the pixel processing pipeline. The only way to select between
many hit locations according to the space-filling path traversal
order is via priority encoding. After the hit location was
communicated, the bit for that location has to be reset in order
for a priority encoding scheme to work further. Referring to
Figure 2, an (x, y) offset position can be encoded in terms of
block positions (8×8 fragment regions), group positions (4×4
fragment regions), quad positions (2 × 2 fragment regions),
and positions in quad. Assuming a 32 × 16 pixel tile, the
location (x, y) = (x4x3x2x1x0, y3y2y1y0) can be encoded as
(Block,Group,Quad, Pos) = (y3x4x3, y2x2, y1x1, y0x0).
With this encoding, priority can be restated hierarchically: hit
locations in a block (respectively group, quad) encountered
earlier on the space-filling path have a higher priority than any
hit locations in a block (respectively group, quad) encountered
later on the path (see Figure 3).

The subsystem is part of a larger rasterization system that
contains also a logic-enhanced memory. The systolic primitive
scan-conversion subsystem, using edge functions, works on a
sliding window of 8×8 locations and outputs every clock cycle
the primitive shape in the space-filling path order presented in
Figure 2 (encoded with one bit per location: ones represent tile
pixels covered by primitive, zeros represent pixels not covered)
for a different 4×4 pixel region inside the currently processed
block. The window is moved to cover all the locations in the
tile. The logic-enhanced memory works back-to-back with the
systolic subsystem, contains the same number of bits as the
number of pixels in the tile, and during rasterization time
it will be filled up in several clock cycles by the systolic
primitive scan-conversion subsystem with the stencil of the
primitive. The hierarchical priority encoding scheme for the
hit locations is enforced by the logic-enhanced memory. Once
the shape of the primitive has been coded inside the memory,
the memory internal logic is capable of delivering on request
in one clock cycle at least one and up to four hit positions
to the pixel processing pipelines, signaling when all the
hit positions were consumed or if none existed. The logic-
enhanced memory is described in [8]. For the current tile size
of 32× 16 pixels, the computations for an entire tile will take
32 clock cycles. Therefore a “ghost” primitive can be detected
and discarded in only 32 clock cycles.

A primitive is rasterized using edge functions. In a tile-
based rasterizer, for an edge vector

−−→
AB the edge function can

518

➡ ➡

x
bi

x
bo

x
Ox

I

Tile Index Tile Offset

x

Fig. 4. Fields of the x screen coordinate.

M00

N

M0

M0

M

M

M

M

N

N+M

N+M0 = N+2M

N+M0+M = N+3M

N+M00 = N+4M

N+M00+M = N+5M

N+M00+M0 = N+6M

N+M00+M0+M = N+7M

Fig. 5. Parallel computation graph of xbo · M + N for every xbo ∈ [0, 7].

be reformulated as follows:

EAB(x, y) = (x − xA) · ∆yAB − (y − yA) · ∆xAB

= xO · ∆yAB − yO · ∆xAB + EAB(xI , yI)
= (xbi · 8 + xbo) · ∆yAB

−(ybi · 8 + ybo) · ∆xAB + EAB(xI , yI)
= xbo · ∆yAB − ybo · ∆xAB + (xbi · ∆yAB

−ybi · ∆xAB) · 8 + EAB(xI , yI)
= xbo · M + ybo · P + N + Q
= (xbo · M + N) + (ybo · P + Q)

(1)
where (xI , yI) represent current tile coordinates on the screen,
(xO, yO) represent offset coordinates in a tile, (xbi, ybi) are
the block coordinates in the tile, and (xbo, ybo), xbo ∈ [0, 7],
ybo ∈ [0, 7] represent pixel offsets in the block (see Figure 4).

CK

D Q

CLR

CK

D Q

CLR
CK

D Q

CLR

7

7

7

7

7
Cin

B

A

Cout

SUM
7

7

7

7 7

Ndlyd

Sdlyd

InitCryDFF_B

M

N

a)

b)

InitCryDFF_B

Sdlyd

Ndlyd
Cell

M

N

Fig. 6. Cell processing element circuit diagram.

Cell

Cell

Cell

Cell

Cell

Cell

Cell

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

CK

D Q

CLR

CK

D Q

CLR

7

7 7

CK

D Q

CLR

CK

D Q

CLR

CK

D Q

CLR

N

M00

M0

M

sharing

DFF

InitCryDFF_B

7M+N

6M+N

4M+N

5M+N

3M+N

2M+N

M+N

N

Fig. 7. Systolic computation of xbo · M + N where xbo ∈ [0, 7].

The values ∆xAB , ∆yAB and the quantity EAB(xI , yI) are
computed at primitive setup time. The quantity (xbi ·∆yAB −
ybi ·∆xAB)·8 is computed before any computations are started
on a new block window and it can be performed efficiently as
multi-operand addition (carry-save addition followed by carry-
propagate addition). Therefore the last two quantities can be
regarded as constants N and Q and what we propose is to
compute in parallel the expression (xbo ·M +N)+ (ybo ·P +
Q) for every xbo ∈ [0, 7], ybo ∈ [0, 7] (when antialiasing is
considered the required normalized edge functions [9] can be
obtained with a correction of the constant Q with the term
1/2 · (|∆xAB | + |∆yAB |)).

The first solution is to compute the expression xbo ·M +N
and ybo · P + Q for every xbo ∈ [0, 7], ybo ∈ [0, 7] using a
direct hardware mapping of the graph depicted in Figure 5.
In the tree, M0 and M00 are denoting left-shifted value of
M with one position and two positions, they will be derived
from M value by some multiplexers outside the tree circuit.
The costs for the EAB(x, y) computation in the current block
will be prohibitive in both area and latency for this method:
it will require 78 28-bit adders (for all three edge function
computation this requires 234 28-bit adders) and the critical
path will span 4 28-bit adders.

We are proposing a second solution that is more economical
in cost and has a very low latency. This is the systolic
subsystem described in the following. First, the expresions
xbo ·M + N and ybo ·P + Q can be computed in parallel for
every xbo ∈ [0, 7], ybo ∈ [0, 7] using a tree of Cell processing
elements. The Cell processing element is depicted in Figure 6
and contains a 7-bit ripple-carry adder, and three D flip-flops:
one in which the carries are stored between additions, one
to store the result of the current addition and one to delay

519

➡ ➡

7
Cin

B

A

Cout

SUM
7

7

CK

D Q

CLR

CK

D Q

CLR

7

7

7

7

7

msb

NZero

SGN

InitCryNZroDFF_B

a)

b)

Node
PY+Q

MX+N
InitCryNZroDFF_B

NZero

SGN

bo
x M+N

bo
y P+Q

Fig. 8. Node processing element circuit diagram.

with one clock cycle one of the operands. The systolic tree
computing xbo ·M + N is presented in Figure 7. Every clock
cycle 7 bits of the 28-bit result are output by the systolic tree
starting with the least significant 7 bits.

As 7-bit slices of the values xbo ·M + N and ybo · P + Q,
xbo ∈ [0, 7], ybo ∈ [0, 7] are generated every clock cycle, they
are combined by Node processing elements arranged in a 8×8
matrix. The Node processing element is depicted in Figure 8
(for drawing purposes, the outputs in the symbol are drawn
with crosses meaning that they are perpendicular on the page).
It takes two partial 7-bit results and combines them with a 7-bit
ripple-carry adder outputing the edge function sign bit and the
edge function not zero flag (to compute the primitive stencil,
the values of the edge functions are not interesting per se but
their relationship with 0). In addition, another D flip-flop is
again required to store the generated carry.

The entire systolic subsystem for an edge function is pre-
sented in Figure 9. With additional information (edge quadrant,
primitive edge orientation convention, antialiasing enabled or
not) the two outputs of every Node processing element can be
compressed in only one signal (the compression layer depicted
in Figure 9). The 8×8 matrix of Node elements is generating
results for a different sliding window of 8× 8 locations every
4 clock cycles. With the addition of the D flip-flop layers
depicted in Figure 9, results for a different group (4 × 4
locations) in the window are generated every clock cycle and
with proper multiplexing they are available on the Inside
output port. Assuming an identical systolic subsystem for each
primitive edge, the Inside signals for each edge are anded
and each bit in the 16-bit result indicates if that particular
location in the group is covered by the primitive or not (one

TABLE I

HARDWARE IMPLEMENTATION RESULTS

Technology UMC Logic18-1.8V/3.3V-1P6M

Std. Cell Library VST eSi-Route/11

Critical Path [ns] 2.155

Area [µm2] 269964

Std. Cell Number
D Flip-Flops (DFF area = 81.3µm2) 1413
Full Adders (FA area = 65µm2) 1638
Control Circuitry Gates 7071
Total 10122

Power Consumption [mW] 33
Energy Consumption [mW/MHz] 0.165

Performance
Rendering Rate [triangles/s] 2.44 × 106

Fill Rate [pixels/s] 460 × 106

for inside the primitive, zero if outside). Every clock cycle, the
groups generated are written to the logic-enhanced memory.

III. HARDWARE IMPLEMENTATION RESULTS

The systolic subsystem sliding window size was designed to
lead to hardware costs that match the hardware size of a func-
tionally equivalent full-screen scan-conversion unit. Larger
sizes, although they may provide benefits from a performance
viewpoint, were considered too costly for mobile terminals and
were not implemented. We performed the hardware synthesis
using Synopsys tools in a commercial 0.18µm IC manufac-
turing technology. The results for the systolic primitive scan-
conversion subsystem for all three edge functions including
the required control are presented in Table I. The critical path
of the unit can be clocked at a frequency of at least 200 MHz
when reasonable clock uncertainty is taken into account. The
latency is one primitive stencil computed every 32 clock cycles
but the stencil computation is completely hidden by the logic-
enhanced memory operation that feeds the pixel processing
pipelines. The power consumption was estimated assuming
random vectors on the inputs and is presented also in Table I.
It should be noted that in reality the actual figure of power
consumption may be somewhat lower due to existing signal
correlations that are not accounted for in our estimation. The
system we are describing is already modeled in SystemC as
part of GRAAL [10], a full-fledged 3D graphics OpenGL-
compliant tile-based hardware rasterizer. The performance
figures presented in Table I are computed for typical triangles
with an average area of 160 pixels [11] and indicates the
performance of the triangle setup stage and the maximum
theoretical pixel fill rate (doesn’t account for texture cache
miss penalty) that can be achieved with the proposed systolic
subsystem.

It would have been of interest to compare our scheme
with other designs. Unfortunately implementation details that
regard what we have developed (the primitive scan-conversion
hardware algorithm) are not available from the existing liter-
ature (see for example [12]).

520

➡ ➡

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

7

7

7

7

7

7

7

7

NodeNode

NodeNode

16
16

16

16

16

CK

D Q

CLR

CK

D Q

CLR

CK

D Q

CLR

DFF Layer

DFF Layer

DFF Layer

Compression layer of Node’s NZero and SGN bits to 1 bit

Cell Tree

N M+N 2M+N 3M+N 4M+N 5M+N 6M+N 7M+N

Cell Tree

7P+Q

6P+Q

5P+Q

4P+Q

3P+Q

2P+Q

P+Q

Q

INSIDE
MUX
4:1

InitCryDFF_B

InitCryDFF_B

M, M0, M00, N

P, P0, P00, Q

LOGIC
Edge Parameters

Fig. 9. Systolic computation of the edge function for an 8 × 8 pixel window.

IV. CONCLUSIONS

An efficient systolic primitive scan-conversion subsystem
to accelerate primitive rasterization in 3D graphics tile-based
rasterizers was presented. The system solves all the compli-
cations brought by the tile-based rasterization paradigm. The
main features are no overhead in finding the first hit position
inside the primitives, efficient handling of “ghost” primitives,
and a space-filling rasterization order that simplifies the pixel
processing stage hardware design for high throughput.

As the pixel filling-rate performance of a 3D graphics tile-
based hardware rasterizer is affected by texturing, in the near
future we plan to conduct research on various texture cache
architectures to maximize the hit ratio for the proposed pixel
rasterization order to sustain the theoretical fill rate figure
estimated in Section III.

REFERENCES

[1] T. Akenine-Möller and E. Haines, Real-Time Rendering. A K Peters,
Ltd., 2002.

[2] M. Waller, J. Ewins, M. White, and P. Lister, “Effi cient primitive
traversal using adaptive linear edge function algorithms,” Computer &
Graphics, vol. 23, pp. 365–375, 1999.

[3] J. McCormack and R. McNamara, “Tiled Polygon Traversal Us-
ing Half-Plane Edge Functions,” in Proceedings of the 2000 SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware, 2000, pp.
15–21.

[4] J. Pineda, “A Parallel Algorithm for Polygon Rasterization,” Computer
Graphics (ACM SIGGRAPH ’88 Conference Proceedings), vol. 22,
no. 4, pp. 17–20, 1988.

[5] Z. S. Hakura and A. Gupta, “The Design and Analysis of a Cache Archi-
tecture for Texture Mapping,” in Proceedings of the 24th International
Symposium on Computer Architecture. ACM Press, 1997, pp. 108–120.

[6] M. Cox, N. Bhandari, and M. Shantz, “Multi-Level Texture Caching for
3D Graphics Hardware,” in Proceedings of the 25th Annual International
Symposium on Computer Architecture. IEEE Press, 1998, pp. 86–97.

[7] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a Tex-
ture Cache Architecture,” in Proceedings of the 1998 EUROGRAPH-
ICS/SIGGRAPH Workshop on Graphics Hardware. ACM Press, 1998,
pp. 133–142.

[8] D. Crisu, S. Cotofana, S. Vassiliadis, and P. Liuha, “Logic-Enhanced
Memory for 3D Graphics Tile-Based Rasterizers,” in Proceedings of the
2004 IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS 2004), July 2004, pp. II–237–II–240.

[9] A. Schilling, “A New Simple and Effi cient Antialiasing with Subpixel
Masks,” Computer Graphics (ACM SIGGRAPH ’91 Conference Pro-
ceedings), vol. 25, no. 4, pp. 133–141, 1991.

[10] D. Crisu, S. Cotofana, and S. Vassiliadis, “A Proposal of a Tile-Based
OpenGL-Compliant Rasterization Engine,” Computer Engineering Lab-
oratory, Delft University of Technology, Deliverable no. (2002)–02,
2002, Tech. Rep.

[11] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha, “GraalBench: A 3D
Graphics Benchmark Suite for Mobile Phones,” in Proceedings of ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’04), June 2004.

[12] “ARM MBX HR-S 3D Graphics Core — Technical Overview,” ARM
Ltd. and Imagination Technologies Ltd., 2003.

521

➡ ➠

