
Cache Partitioning Options for Compositional Multimedia
Applications

A.M. Molnos
�������������

, M.J.M. Heijligers
�������

, S.D. Cotofana
�����

,
J.T.J. van Eijndhoven

�������
�����

Delft University of Technology
Mekelweg 4, 2628 CD, Delft, The Netherlands

Phone: 015-2786196 Fax: 015-2784898
email: � ancutza, sorin � @dutepp0.et.tudelft.nl�������

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
email: � marc.heijligers, jos.van.eijndhoven � @philips.com

Abstract—
The use of conventional probabilistic cache models in em-

bedded multimedia systems is restricted because the tasks
flush each others data out of the cache in an unpredictable
manner making the system not compositional. In this way
the overall performance is difficult to predict and the inte-
gration of new tasks expensive. In a multiprocessor plat-
form the unified levels of cache shared between processors
are causing the largest task conflicts. Our proposal is to in-
troduce a compositionality property to the system such that
the overall performance can be easily computed if the com-
ponents’ performance in known. This property is obtained
by means of assigning each task their exclusive part of the
unified level of cache shared between processors. This ar-
ticle also presents the results of the effect on performance
(measured in number of cache misses) of two types of cache
partitioning, namely set based and associativity based parti-
tioning, for the case of multimedia applications. Our exper-
iments indicate that when applied to a multiprocessor with
memory hierarchy the set based partitioning performs al-
ways better that the associativity based partitioning. More-
over set based partitioning typically results in performance
gain of up to 35% less misses, where the associativity based
partitioning always results in large performance degrada-
tion of 17% to 150% more misses, when compared with the
shared cache case.

I. INTRODUCTION

The increase in size and complexity of state-of-the-art
multimedia applications require high performance hard-
ware platforms with large memory bandwidth. The in-
crease in bandwidth to off-chip memories is not growing as
fast as the increase in speed of computation power, leading
to a 50% processor/memory speed gap, as shown in [10].
A possible approach to cope with this processor-memory
gap is to use (distributed) memory hierarchies (caches),
such as reported in [10].

In parallel environments caches induce undesired un-
predictability because tasks can influence each others per-
formance by flushing each others data out of the cache.
Under these conditions it is difficult to guarantee mem-
ory hierarchy performance for single tasks, and hence for
the system as a whole. In the real-time domain one could
think of replacing caches with scratch pad memories, but
in practice removing caches is not a good choice because
they provide flexibility. They don’t need to be resized or
modified if the application changes. Detailed analysis re-
garding the memory requirements of multimedia applica-
tions’ code and data at every change of standards or fea-
tures takes much effort and negatively affects the time-to-
market.

Our proposal is based on the observation that the fol-
lowing holds true: in a multiprocessor system, the levels
of unified cache shared between processors are the most
affected by the inter-task conflicts. Thus we propose to
achieve compositionality by exclusively assigning parts of
the last level of cache to tasks. The problem addressed in
this article can be stated as follows: given the tasks that are
running concurrently in a composed system, find a cache
partitioning strategy that optimizes the overall system per-
formance.

The performance implication of two cache partition-
ing methods, set-based partitioning and associativity-
based partitioning are compared for multimedia work-
loads, using a multiprocessor CAKE platform [1]. The
simulation indicate that, with respect to the number
of misses, set-based partitioning always performs better
that associativity-based partitioning. Compared with the
shared cache case, set-based partitioning can a bring per-
formance improvement of up to 35% less cache misses.
In the most disadvantageous studied case this partitioning
type results in 27% increase in number of misses. Com-

86



2

pared with the shared cache case, associativity-based par-
titioning brings large performance degradation of 17% to
150% more cache misses.

The outline of this paper is as follows. Section II
presents the work carried out till now in this field of inter
task cache interference. Section III briefly describes cache
partitioning, and proposes two candidates for experiments.
Section IV presents the target architecture, the method
used to compare cache partitioning types and the practi-
cal results. Finally in Section V conclusions are drawn.

II. RELATED WORK

In the single processor domain different cache manage-
ment methods were proposed.

In [3], a hardware method to divide a fully associative
cache into partitions for each real-time task and a larger
partition called the shared pool for the non-real-time tasks
is described.

A software cache partitioning method is presented in
[6]. The address space is partitioned among caches at com-
pile and link time. This strategy is applicable only for level
one caches.

In [5] an operating system controlled cache partition-
ing method is proposed. The major drawbacks of this
method are that it is limited to physically indexed caches
and it limits to one memory page the basic partitioning unit
assignable to a task.

Different analytical cache models to estimate the over-
all miss rate in a multi-threading system are proposed in
[8] and [11]. Both of the methods are applicable to fully
associative caches with a last recently used replacement
strategy (set associative caches are approximated as fully
associative). Only the case of column caching is studied.

In [9] the problem of cache efficiency for simultaneous
threads in a time-sharing environment is tackled using dy-
namic column caching, in a best-effort way. Based on their
number of misses tasks are dynamically ”stealing” each-
other cache ways, such that the overall number of misses
is improved. In [11] the problem of optimal allocation of
cache between two competing processes that minimizes
the overall miss rate is presented.

A task allocation scheme for multi-rate systems on mul-
tiprocessor based on a cache partitioning and reservation
technique is presented in [4]. The fact that only the instruc-
tions caches are modeled makes this method inapplicable
for preserving the individual task performance in the case
of unified shared caches.

In [7] is introduced a compositional cache model that
used specialized cache management instructions. This
strategy is applicable only for level one data caches.

The main differences between our work and the previ-
ous research is that we tackle the case of applications run-
ning on platforms with unified set-associative cache shared
between the processors. For multimedia applications the
impact of different types of cache partitioning is studied.

III. CACHE PARTITIONING

The platform model for the proposed method is a ho-
mogeneous on-chip multiprocessor having high bandwidth
communication network with the partitionable shared uni-
fied on-chip cache. On this platform applications consist-
ing of parallel tasks are executed. The underlying idea
of the proposed partitioning strategy is to give different
amount of cache to the tasks.

In a conventional set associative cache organization the
address is split into three parts: tag, index and offset [10].
As can be seen also in the Figures 1 and 2 the index directly
addresses the cache set in which the data might be. The tag
part of the address is compared against the tag part stored
in the cache to determine if there is a hit or a miss. The
offset part of the address selects the desired word in the
cache block.

With respect to conventional cache organization we
identify two main possible types of partitioning:

� Based on associativity (Figure 1) - tasks get a number
of ways from every set of the cache. At this level the
granularity of the partitioning is limited to the num-
ber of ways in a set (cache organization). This par-
titioning type is commonly used because the imple-
mentation doesn’t require modifications in the struc-
ture of the cache (tag, index size) or in the address-
ing mode. Implementing it requires a small change
in the hardware responsible with the replacement pol-
icy such that, depending on the task that accesses the
memory, different ways are searched.

� Based on sets (Figure 2) - tasks get different amount
of sets from the cache. Depending on the desired par-
tition granularity, a number of bits from the index part
of the address should be translated such that the ac-
cessed memory location goes into the allocated cache
partition. The implementation requires the hardware
support for address translation and allows a finer gran-
ularity than partitioning based on associativity.

A mixed set and associativity based partitioning is pos-
sible but both implementation overhead will add, so the
cache will become too slow.

Both presented types of cache partitioning are suitable
for solving the predictability problem of a system consist-
ing in multiple tasks sharing the cache. The granularity of
the partitioning should be fine enough in order to be able
to allocate different cache amount for each task. From this

87



3

tag index offset

=?
=?

=? .
.
.

.

valid tag data

set 1

set 0

set N

for task 1

for task 2

for task 2

for task 1

for task 1

for task 2

HIT/MISS

Fig. 1. Associativity-based cache partitioning

tag index offset

=?
=?

=? .
.
.

.

valid tag data

set 1

set 0

set N for task 2

for task 1

HIT/MISS

Fig. 2. Set-based cache partitioning

point of view set based partitioning is preferred.
In the next section we will compare the performance

of the two types of partitioning measured in number of
misses.

IV. FRAMEWORK

The used applications consist of parallel tasks. The per-
formance (measured in number of misses) comparison be-
tween different cases of cache partitions and the shared
cache case is made. Due to compositionality property in-
troduces by the cache partitioning every task’s number of
misses can be obtained by simulating that task in isolation,
on a single-processor having different cache parameters.
For the shared cache case all the task are simulated con-
currently on a multiprocessor.

The operating system can be treated as a separate task
with its own part of the cache. In our examples, its cache
interference was only present when accessing data struc-
tures for the file system and therefore it is negligible.

A. Target architecture

Our target architecture is a multi-processing architec-
ture (for increased performance), together with distributed
memory hierarchies (for increased bandwidth). For our

experiments we use a practical instance of such a target
architecture, called the CAKE platform [1].

The CAKE platform consist of a homogeneous network
of computing tiles on a chip. Each tile contains CPUs
(trimedia and/or MIPS), a router (for out-tile communi-
cation) and memory banks (Figure 3). The processors are
connected to memory by a fast high-bandwidth snooping
interconnection network. The on tile memory is actually
used as a level 2 cache, shared between tasks, facilitating
a fast access to the main memory which is outside chip.

. . . 

. . . L2
cache

CPU CPUCPU

L1 cache L1 cache L1 cache

memory

bank

memory

bankbank

memory

interconnection network

Fig. 3. CAKE architecture - tile view

For our experiment, we used the level 2 cache of CAKE
platform which is shared between tasks to study the impact
of cache partitioning type on performance of the system.
The possible allocated cache size for a task is limited to
powers of two times the associativity of the cache.

B. Practical results

The application workloads for the studies are belonging
to MediaBench [2]. The four examples of applications pre-
sented here are as follows: a picture in picture (PiP) appli-
cation consisting of two concurrent mpeg2 decoders work-
ing on different video streams, a PiP application consisting
of three concurrent mpeg2 decoders working on different
video streams, a mpeg2 encoder, jpeg decoder and mpeg2
decoder running in parallel and a mpeg2 encoder, epic de-
coder, adcpm decoder and h26l encoder part running in
parallel.

In the first example the level 2 cache has a size of 1MB,
is 8-ways associative, 256 sets and is partitioned in three
different ways. The studied cases are:

- shared: the two mpeg2 decoders are sharing the com-
plete L2 cache.

- set-based partitioning: every decoder task gets 128
sets of the cache.

- assoc-based partitioning1: every decoder task gets 4
ways of every cache set.

- assoc-based partitioning2: the decoder task that
works on the smaller picture gets 3 ways of the cache
and the other decoder gets 5 ways of the cache.

The corespondent number of misses for every cache con-
figuration are presented in Figure 4. In terms of cache

88



4

misses it was observed that partitioning at associativity
level (assoc-based partitioning1, assoc-based partition-
ing2) gives a performance degradation of at least 17%
respectivelly 35% compared to the performance of the
shared cache. For the set level partitioning the perfor-
mance is increased by 13%.

Fig. 4. Cache misses for different partition types - example 1

In the second example the level 2 cache has a size of
1MB, is 8 ways associative, has 256 sets and was parti-
tioned in four different ways. The studied cases are:

- shared: the three decoder tasks are sharing the com-
plete L2 cache.

- set-based partitioning: the decoder task that works on
the largest picture gets 128 sets and each of the other
two decoders get 64 sets.

- assoc-based partitioning1: the decoder task that
works on the largest picture gets half of the cache
ways (4 ways) and each of the other two decoders get
a quarter of the cache’s ways (2 ways).

- assoc-based partitioning2: two decoders get each 3
ways from every set and the other only 2 ways.

- assoc-based partitioning3: the same ratio as in case 4,
but a different allocation between tasks.

Fig. 5. Cache misses for different partition types - example 2

The obtained corespondent number of misses for the five
cache configuration of the second example are presented

in Figure 5. In terms of cache misses it was observed
that partitioning at associativity level gives a performance
degradation of 152% (assoc-based partitioning1), 66%
(assoc-based partitioning2) and 110% (assoc-based par-
titioning3). In this example the L2 misses are decreased
with 24% in the case of set level partitioning.

In the third example the level 2 cache has a size of 1MB,
is 8 ways associative, has 256 sets and was partitioned in
three different ways. The studied cases are:

- shared: tasks are sharing the complete L2 cache.
- set-based partitioning: the mpeg2 decoder gets 128

sets and the jpeg decoder and the mpeg2 encoder get
every one 64 sets.

- assoc-based partitioning1: the mpeg2 decoder has 4
sways of every set and the jpeg decoder and mpeg2
encoder have everyone 2 ways of every set.

- assoc-based partitioning2: the mpeg2 decoder and the
mpeg2 encoder have everyone 3 ways of every set and
the jpeg decoder has 2 ways of every set.

Fig. 6. Cache misses for different partition types - example 3

The obtained corespondent number of misses for the
four cache configuration of the third example are presented
in Figure 6. In terms of cache misses it was observed
that all the partitioning ratio simulated give a performance
degradation (27% the set-based partitioning, 102% the
assoc-based partitioning1 and 30% (assoc-based parti-
tioning2).

In the forth example the level 2 cache has a size of 2MB,
is 8-ways associative, has 512 sets and it was partitioned
in two different ways. The simulated cases are:

- shared: the tasks are sharing the complete L2 cache.
- set-based partitioning: every task gets a forth of the

number of the cache sets.
- assoc-based partitioning1: every task gets 2 ways of

every cache set.
The corespondent number of misses for every forth exam-
ple cache configuration are presented in Figure 7. In terms
of cache misses it was observed that partitioning at asso-
ciativity level (assoc-based partitioning1) gives a perfor-
mance improvement of 1% and the set-based partitioning

89



5

gives a performance improvement of 30% compared to the
performance of the shared cache.

Fig. 7. Cache misses for different partition types - example 4

V. CONCLUSIONS

Due to inter-task cache conflicts shared caches cause un-
desired unpredictability when used in a embedded multi-
processor environment. To eliminate inter-task conflicts
and induce compositionality to the system this article pro-
pose partitioning the unified level of cache shared between
processors. Two options of cache partitioning are avail-
able: set based partitioning and associativity based par-
titioning. Studying memory performance of multimedia
workloads in multiprocessor environments, we found that
set-based partitioning is always better that associativity-
based partitioning in terms of number of misses. Com-
pared with the shared cache case, set-based partition-
ing can bring performance improvement up to 35% less
misses. In the most defavorable studied case this parti-
tioning type results in 27% increase in number of misses.
Compared with the shared cache case, associativity-based
partitioning brings large performance degradation of 17%
to 150% more cache misses.

Future research will be oriented toward finding the par-
titioning ratio such that the best performance gain for the
overall system is obtained.

REFERENCES

[1] P. Stravers, J. Hoogerbrugge. Homogeneous Multiprocessing and
the Future of Silicon Design Paradigms In Proceedings, Interna-
tional Symposium on VLSI Technology, Systems, and Applications
(VLSI-TSA) 2001.

[2] L. Chunho, M. Potkonjak, W.H. Mangione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Commu-
nicatons Systems. In International Symposium on Microarchitec-
ture, 1997.

[3] D.B. Kirk. SMART (Strategic Memory Allocation for Real-Time)
Cache Design. In IEEE symposium on Real Time Systems, 1989.

[4] Y. Li, W. Wolf. Allocation of Multirate Systems on Multiproces-
sors with Memory Hierarchy Modeling and Optimization. In Pro-
ceedings, 5th International Workshop on Hardware/Software Co-
Design (CODES/CASHE ’97), 1997.

[5] J. Liedtke, H. Härtig, M. Hohmuth. OS-Controlled Cache PRe-
dictability for Real-Time Systems. In 3rd IEEE Real-Time Tech-
nology and Applications Symposium, 1997.

[6] F. Mueller. Compiler Support for Software-Based Cache Parti-
tioning. In ACM SIGPLAN Notice, 1995.

[7] H. Muller, D. Page, J. Irwin, D. May. Caches with Compositional
Performance. In Proceedings, Embedded Processor Design Chal-
lenges, 2002.

[8] G.E. Suh, S. Devadas, L. Rudolph. Analytical Cache Models with
Applications to Cache Partitioning. In Proceedings of the 2001
International Conference on Supercomputing, 2001.

[9] G.E. Suh, S. Devadas, L. Rudolph. Dynamic Cache Partitioning
for Simultaneous Multithreading Systems. In Thirteenth IASTED
International Conference on Parallel and Distributed Computing
Systems, 2001.

[10] J.L. Hennesy, D.A. Patterson. Computer Architecture: A Quanti-
tative Approach, Morgan Kaufmann Publishers, 2003.

[11] H.S. Stone, J. Truek, J.L. Wolf. Optimal Partitioning of Cache
Memory. In IEEE Transactions on computers, volume 41, number
9, 1992.

90


