
2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

MSc THESIS

Session Initiation Protocol Benchmark Suite
Jiangbo Yin

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2004-05

In current-day networks, the bottleneck in achieving high-speed and
high-bandwidth networks has shifted from the physical link limita-
tions to the network processing performance within network nodes.
The need for such networks is driven by the fact that increasingly
more applications are introduced to send huge amounts of (multime-
dia) data over the networks, e.g., voice-over-IP (VoIP), videoconfer-
encing, network gaming, etc. Consequently, the network processor –
a programmable (general-purpose) processor incorporating special-
ized hardware – has been under investigation to provide both high
performance and high flexibility (due to the varying support of dif-
ferent and emerging applications). At the same time, other design
constraints must be met, such as cost, port density, and real-time
processing. Therefore, an important aspect in the design of network
processors is understanding its functionalities that are mostly de-
fined in network protocols. By analyzing/profiling the protocols, we
can determine the most time-consuming functionalities and decide
on the most appropriate hardware/software mapping.
Protocol analysis is the part of the network processor design. The
main purpose of the protocol analysis is measuring the functional-
ities of the protocol and determining the most complex and time-

consuming functionality that should be implemented in hardware of the network processor to speed up the
performance of the network processor. In this thesis, we investigate the Session Initiation Protocol (SIP)
and benchmarks for SIP. SIP is an application level control protocol that is used to set up, modify, and
tear down the multimedia session between the participants. We modify an exist SIP implementation (SIP
Express Router) to make the benchmarks to measure the performance of the protocol. The benchmark
suite consists of three benchmarks: message parser benchmark, action benchmark, and forward benchmark.
They cover nearly all important functionalities of the SIP. A Message Generation Tool (MGT) was created
to generate the SIP messages automatically. It is very useful to the simulation of the SIP benchmarks. The
results of the benchmark suite present the profiling performance (in terms of cycles) and the architectural
characteristics of the SIP. It helps the designer to determine that which functionalities should be involved
in network processor design. Which is the main contribution of this thesis.

Session Initiation Protocol Benchmark Suite

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Jiangbo Yin
born in Wrumqi, China

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Session Initiation Protocol Benchmark Suite

by Jiangbo Yin

Abstract

I
n current-day networks, the bottleneck in achieving high-speed and high-bandwidth networks
has shifted from the physical link limitations to the network processing performance within
network nodes. The need for such networks is driven by the fact that increasingly more ap-

plications are introduced to send huge amounts of (multimedia) data over the networks, e.g.,
voice-over-IP (VoIP), videoconferencing, network gaming, etc. Consequently, the network pro-
cessor – a programmable (general-purpose) processor incorporating specialized hardware – has
been under investigation to provide both high performance and high flexibility (due to the vary-
ing support of different and emerging applications). At the same time, other design constraints
must be met, such as cost, port density, and real-time processing. Therefore, an important
aspect in the design of network processors is understanding its functionalities that are mostly
defined in network protocols. By analyzing/profiling the protocols, we can determine the most
time-consuming functionalities and decide on the most appropriate hardware/software mapping.

Protocol analysis is the part of the network processor design. The main purpose of the
protocol analysis is measuring the functionalities of the protocol and determining the most com-
plex and time-consuming functionality that should be implemented in hardware of the network
processor to speed up the performance of the network processor. In this thesis, we investigate
the Session Initiation Protocol (SIP) and benchmarks for SIP. SIP is an application level control
protocol that is used to set up, modify, and tear down the multimedia session between the partic-
ipants. We modify an exist SIP implementation (SIP Express Router) to make the benchmarks
to measure the performance of the protocol. The benchmark suite consists of three benchmarks:
message parser benchmark, action benchmark, and forward benchmark. They cover nearly all
important functionalities of the SIP. A Message Generation Tool (MGT) was created to generate
the SIP messages automatically. It is very useful to the simulation of the SIP benchmarks. The
results of the benchmark suite present the profiling performance (in terms of cycles) and the
architectural characteristics of the SIP. It helps the designer to determine that which function-
alities should be involved in network processor design. Which is the main contribution of this
thesis.

Laboratory : Computer Engineering
Codenumber : CE-MS-2004-05

Committee Members :

Advisor: Stephan Wong, CE, TU Delft

Mentor: Yunfei Wu, CE, TU Delft

Member: Ben Juurlink, CE, TU Delft

Member: Sorin Cotofana, CE, Delft

i

ii

To my families, friends, and lover

iii

iv

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1
1.1 Network Processor . 1
1.2 Benchmark for Protocols . 2
1.3 Problems and Methods . 3
1.4 Structure of the Thesis . 3

2 SIP Introduction 5
2.1 SIP in Network . 5

2.1.1 Position in Network Protocol . 6
2.2 SIP Network Elements . 6

2.2.1 User Agent . 7
2.2.2 Proxy . 7
2.2.3 Registrar . 8
2.2.4 Redirect Server . 8

2.3 SIP Messages . 9
2.3.1 SIP Request . 10
2.3.2 SIP Response . 13

2.4 SIP Transaction Models . 14
2.4.1 Transaction with Proxy Server . 15
2.4.2 Transaction with Redirect Server 16
2.4.3 Transaction of Register . 17

2.5 Conclusion . 18

3 SIP Benchmark 19
3.1 SIP Implementation . 19

3.1.1 Architecture of the Software . 19
3.1.2 Underlying Functions . 21

3.2 Benchmark Implementation . 22
3.2.1 Benchmark Introduction . 23
3.2.2 Benchmark for SIP Implementation 24
3.2.3 Message Generation Tool . 28

3.3 SimpleScalar Tool Set . 29
3.4 Conclusion . 31

v

4 Simulation Results Analysis 33
4.1 Description of Simulation Rules . 33
4.2 Results Overview . 34
4.3 Results of Functions . 36

4.3.1 Message Parser . 36
4.3.2 Action and Forward . 37

4.4 Results on Architectural Characteristics 37
4.5 Conclusion . 39

5 Conclusion 41
5.1 Overview Conclusion . 41
5.2 Main Contributions . 42
5.3 Further Research . 42

Bibliography 45

vi

List of Figures

1.1 Network processor in a typical router application 2

2.1 The SIP position in network . 6
2.2 The elements in SIP network . 7
2.3 The simplest communication model between two UAs 7
2.4 The example communication with proxies 8
2.5 The example communication with registrar 8
2.6 The example communication with redirect server 9
2.7 A typical SIP transaction model . 15
2.8 Forking SIP request through proxy server 16
2.9 The model of using redirect server in SIP Mobility 17

3.1 The architecture of the SIP implementation 20
3.2 The flow chart of parse msg . 21
3.3 The general working model of benchmark 23
3.4 The structure of the input file . 24
3.5 The distribution of the each class of messages in an input file 25
3.6 The examples of matching the first character 26
3.7 The work flow chart of action . 27
3.8 The flow chart of message generation tool 28
3.9 The definition of percentage of each type of the message 29
3.10 The overview of SimpleScalar tool set . 30
3.11 SimpleScalar architecture instruction formats 30
3.12 Pipeline for sim-outorder simulator . 31

4.1 The results of each benchmark comparison to the whole application . . . 34
4.2 The extreme testing of different types of the messages 35
4.3 The results of sub-functions in parse message 36
4.4 The results of sub-functions in forward reply 37

vii

viii

List of Tables

4.1 Architectural Characteristics with Different Inputs 38
4.2 Architectural Characteristics with Different Sizes of Cache 38
4.3 Comparison between Different Sets of Cache 39

ix

x

Acknowledgements

It is a wonderful experience to study in Delft University of Technology (TU Delft) for
two years. And I am so lucky to do my Master’s thesis following the Prof. Stephan
Wong in the Computer Engineering (CE) Laboratory. During this period of time, I met
many intelligent and enthusiastic people, I would like express my respect and thanks to
all of them. Without their helps, I can’t finish my thesis at all.

First of all, I would like express my greatest appreciation to my supervisor Prof.
Stephan Wong. He is really an earnest and professional people. His stimulation and
instruction are the great helps to me to finish my thesis. Every time I fell in the morass,
he always helps me to analyze the problems and find the correct direction. And he spend
much time to help me, especially to revise my thesis, which is a hard work indeed. His
manner of the work and his attitude to the work are impressed in my mind deeply.

I have to appreciate the help from Yunfei Wu also. In the last nine months, she
paid attention to my thesis all the time. During my working, she gave me many good
suggestions and supports and expressed the great circumspection and patience to me.

I also want to say thanks to all of my friends both in China and other countries.
They are indispensable to my life. Especially to all the members of Delft China Football
Team (DCF), playing game with them is the part of the most happy time in these two
years.

At last, the special thanks are gave to my families and my girl friend Jie Zhang.
Their endless love and support are the motivation of my progress. They comprehend
my career and suffer long time waiting for me. I feel that they are the most lovely and
trustful people in the world.

Jiangbo Yin
Delft, The Netherlands
August 6, 2004

xi

xii

Introduction 1
In the last decade, the network techniques were developed very fast with the boom of
Internet. At the beginning of this phase, the bottleneck of network is the bandwidth that
means the capacity of the physical links in network. But with the advances of optical
technology the capacity of physical links grow greatly. The bottleneck moves to processing
elements in network devices. Especially for some applications such as voice over IP
(VoIP), Videoconferencing, network games etc., speed up the performance of network
becomes a critical problem. To fix this problem, designing a network processor is an
attractive way.

In this chapter, first we introduce the basic knowledge of network processor in Section
1.1. Then why we need make the benchmark for protocols, which is Section 1.2. Section
1.3 presents the problems and goals. Section 1.4 presents an overview of this thesis.

1.1 Network Processor

Before we start this topic, we should make it clear that what is network processor? And
what is the difference between network processor and general-purpose processor? Net-
work processor (NP) is a high-performance, programmable device designed to efficiently
execute communication workloads[2]. In the last 25 years, with the rapid developing
in VLSI, it is not difficult to make cost-efficient high-performance embedded proces-
sors for communication functions. In fact, a number of factors have contributed to the
development of the NP and the NP industry.

Figure 1.1 is an example of an NP in a typical router line card application. In
this case, the NP has to examine packets at line speed and perform a set of operations
including quality-of-service (QoS) processing.

The network processor design involves many aspects, such as external memory band-
width, power dissipation, pin limitations, packaging, and verification. But in the princi-
ple of design, a designer should handle three key elements which are:

• Real-time processing constraints The real-time processing demands the NP
to use advanced and novel computer architectures to achieve high performance.
For example, videoconferencing has the minimum requirements of network perfor-
mance.

• Flexibility The NP should have the flexibility to deal with the changing of com-
munication protocols and increasing demands for new complex network services.

• Cost-efficiency Considering the physical constraints of VLSI technologies, pack-
aging, and power, finding a cost-efficient way to implement NP.

1

2 CHAPTER 1. INTRODUCTION

Memories, CAMs,
special functions

Other line

Line card

Host control processor

conditioning,
Line interface,

framing
NP

Switch

Card

Figure 1.1: Network processor in a typical router application

Additionally, compared to a general-purpose processor, the NP has more challenges
because of the real-time processing, port density, and power efficient. The high levels
of device integration (on-chip interfaces and controllers for external memories, switch
fabrics, co-processors, network interfaces, etc.), critical shared resources and software
design for high performance system are challenges also.

1.2 Benchmark for Protocols

At the beginning of this thesis, we should ask a question: Why do we need an SIP
benchmark? Compared to a general-purpose processor, the network processor (NP)
support some form of a distributed, parallel programming model and optimized for fast
packet processing and I/O. These features demand the designer to take the performance
requirements of protocols into account. When we design a NP working in the SIP
network, we have to know the related performance of SIP. The benchmark for SIP can
provide us such information. That is the reason to why we should make benchmark for
protocols.

A benchmark is a standard by which others can be measured and judged. In the
computer realm, any program that is used to measure performance can be called a
benchmark[3]. The principle of benchmarking for a protocol is using this protocol in a
simulation environment and getting the performance of each functions of protocol and
the characteristics of the protocol.

There are many network protocols involved in an NP, such as TCP, UDP, SDP,TLS,
SIP etc. In this thesis, we only focus on SIP (Session Initiation Protocol) that is an
application level signaling protocol. This signaling protocol is so simple and efficient that
suitable to be used in VoIP, videoconferencing and network mobility. We will introduce
SIP in detail in Chapter 2. By now, the SIP is not popular and is hard to find exist
benchmarks for it.

1.3. PROBLEMS AND METHODS 3

1.3 Problems and Methods

When we plan to create the benchmarks for protocols, there are several problems have
to be solved. We list the problems and the methods to deal with them.

1. What is the procedure to create the benchmark for a protocol?
Before we create the benchmark for a protocol, we have to have the implementation
of the protocol. In this project, an existing implementation of SIP - SIP Express
Router (SER) is used. We modify the source code and create our benchmarks on it.
Based on the analysis of the implementation of the protocol, we determine which
functionalities of the protocol should be measured. To profile each functionality,
we have to define what kind of the input data for it and what is the expected
results. The benchmark runs in a simulation environment and the results reflect
the performance and architectural characteristics of the protocol.

2. How to determine the most important functionality in SIP?
First, from the study of the protocol description files, we can learn the different
operations of each functionality. The functionality that is necessary in any case
and contains more complex operations than others should be the important one.
Second, after reading the source codes of implementation of SIP, the functions that
contain complex computations or many comparisons should be focused on.

3. Which characteristics of SIP are related to the NP design?
Our benchmarks measure the architectural characteristics of SIP that is needed
when designing an NP for SIP. We should get four characteristics about architecture
design, they are:

• Instruction level parallelism: presents the efficiency of the program. We
get the number of Instruction Per Cycle branch (IPC) to indicate it.

• Branch prediction accuracy: is an important parameter to NP design also.
We investigate branch address-prediction rate (APR) and branch direction-
prediction rate (DPR) for it.

• Instruction distribution indicates the number of instruction and the in-
struction load/store rate to each functionality. We get load/store rate from
benchmarks.

• Cache behavior relates to the cache organization. We know that both the
instruction cache and the data cache can effect the performance of the NP
greatly, so we investigate different sizes of instruction and data caches. Addi-
tionally, the number of set and the block size in the cache are also investigated.

Based on the problems and solutions, we can see the goal of this thesis is investigation
of the characteristics of SIP to get the information for NP design. Which includes the
profiling performance and architectural characteristics of SIP.

1.4 Structure of the Thesis

In this section, we present an overview of the whole thesis.

4 CHAPTER 1. INTRODUCTION

In Chapter 1, we introduce the thesis from three aspects: the challenges of the
network processor design, the requirement of the benchmark, and the SIP overview.

In Chapter 2, we discuss the background of the benchmark for SIP. First, we described
the main aspects of SIP. Then we describe the definition of the SIP network elements and
explain the function of each element. The following part discusses the SIP message and
transaction models. The SIP message is about SIP message structure and types. The
transaction models contain many operations based on different types of SIP messages.
We integrate all aspects in the models to make the functionalities of SIP clearly.

In Chapter 3, we discuss the benchmark for SIP in detail. First, we introduce the
implementation of SIP, which is an exist application that is named SIP Express Router
(SER)[9]. We divide the application into several parts based on the functionalities of
SIP. Then we introduce the benchmark with the definition, methodology. Our work
includes three benchmarks: message parser benchmark, action benchmark and forward
benchmark. Each benchmark consists of input data, simulation processing and expected
results. Additional, a message generation tool is created for convince to generate in-
put data to benchmarks automatically. We introduce the simulation tool sets and the
simulation environment in the last part of this chapter.

Chapter 4 discusses the results of our benchmarks. First is the overview of the
results . We compare the performance of the three benchmarks in terms of the clock
cycles to determine which is the most time consuming one. Then, we do the extreme
testing for these three benchmarks to get raw performance[7]. The sub functions of
each benchmark are tested also. We investigated architectural characteristics in several
aspects. The results can help us to find the cost-efficient way when design a network
processor to implement SIP.

Chapter 5 presents the conclusions of this thesis. It describes the conclusions of each
chapter and the contribution of this thesis. We also present several topics that should
be investigated in the future.

SIP Introduction 2
SIP stands for Session Initiation Protocol. It is an application-layer control protocol
which has been developed and designed within the IETF[8]. The protocol has been designed
with easy implementation, good scalability, and flexibility in mind.

The specifications are described in RFC3261[15]. The protocol is used for creating,
modifying, and terminating sessions between participants. Here, the session is considered
to be a set of senders and receivers that communicate and the states kept in those senders
and receivers during the communication. Examples of a session are Internet telephone
calls, distribution of multimedia, multimedia conferences, distributed computer games,
etc.

In this chapter, we describe the structure and characteristics of SIP. Section 2.1
discusses the basic features of SIP. Section 2.2 presents the definitions of the SIP net
work elements. These definitions are used in the remainder of this thesis; Section 2.3
discusses the SIP message, the categories and functions; Section 2.4 presents the SIP
transaction models, which show how the SIP work between different elements. Section
2.5 presents the conclusions

2.1 SIP in Network

SIP is an application-layer control protocol that can establish, modify, and terminate
multimedia sessions (conferences), e.g., Internet telephony calls. With SIP, one can also
invite others to participate in an already existing session, e.g., multi-cast conferences.
Media can be added to (and removed from) an existing session[15]. As specified in
RFC3261, SIP provides four basic functions[6]:

• User location: This function is responsible for translating a user name to user’s
current network address. For example, translating an e-mail-like address to an IP
address. This function includes user mobility features, that means keeping track
of a user’s address during the user’s movement to different locations in the SIP
network. For example, when a user move into the other subnets, his SIP URI
(IP address) should be changed according to the subnet he is in. This function is
finding the latest address of a user.

• Feature negotiation: The responsibility of this function is to ensure that all
participants in a session agree on the features to be supported among them before
the session is set up. Since not all of them have the same capabilities, they exchange
information with each other in order to reach an agreement for all.

• Call management: It takes responsibility for management of participants of a
session. It includes adding, dropping, transferring, and placing participants in a

5

6 CHAPTER 2. SIP INTRODUCTION

session on hold. For example, allows a new user to receive the video media stream
during a videoconferencing.

• Feature modification: This function is in charge of changing the features of a
session during the session. For example, adding a video channel to a session that
is holding only a voice channel.

2.1.1 Position in Network Protocol

SIP can operate over UDP or TCP. When sending over TCP or UDP, multiple SIP
transactions can be carried in a single TCP connection or UDP datagrams. Note that
UDP datagrams, including all headers should not be larger than the path maximum
transmission unit (MTU)[14]. From RFC2543, the MTU normally is 1500 bytes but it
is not the only option. Figure 2.1 depicts the position of SIP in the Internet layers and
the communication between two SIP users. SIP is an application layer protocol that is
located at the top of the OSI (Open System Interconnection) layers.

SIP

IP

TCP or UDP TCP or UDP

IP

User 1

SIP

User 2

Lower Layers Lower Layers

Internet

Figure 2.1: The SIP position in network

2.2 SIP Network Elements

In this section, we present the definition of the SIP network elements. Basic SIP el-
ements are user agents, proxies, registrars, and redirect servers. Though the simplest
communication can be set up by only two user agents, a typical SIP network always
contains several SIP elements.

2.2. SIP NETWORK ELEMENTS 7

server

proxy
redirect
registraruser agent user agent

Figure 2.2: The elements in SIP network

We should note that the SIP elements that we mentioned above are often logical
entities1. That means different elements can be configured together, for example, a
computer can act as both a proxy server and a registrar. In a proper configuration, the
integration of SIP elements can save the implementation cost and increase the speed of
processing between the network elements. In previous example, the proxy server doesn’t
need to communicate with other machines when it needs the information of the registrar.

2.2.1 User Agent

Internet end point that use SIP to find each other and to negotiate a session charac-
teristics are called user agent[10]. Usually, it is an application that is installed in a
computer. Alternatively, it can be an individual device that implements SIP functions,
such as cellular phones, PSTN gateways, PDAs etc.

User agent can be classified into User Agent Client (UAC) and User Agent Server
(UAS) in logic functions. UAC is the function that sends requests and receives responses.
UAS is the function that receives requests and sends responses. Normally, a user agent
has both of these two functions. For example, in Figure 2.3, when a user agent receives
request and sends response, we call it UAS; when a user agent sends request and receives
response, we call it UAC.

UAC UAS

Request

Response

Session

Figure 2.3: The simplest communication model between two UAs

2.2.2 Proxy

The proxy is an intermediary entity that acts as both a server and a client for the purpose
of translating requests to other clients[14]. A proxy server primarily plays the role of
routing, which means its job is to ensure that a request is sent to another entity that is
“closer” to the destination. As dispected in Figure 2.4, the UAC generates an INVITE
request and sends to its SIP domain server-proxy A. Because the UAS is not in the same

1An entity that is defined by logic function not by physical characteristics.

8 CHAPTER 2. SIP INTRODUCTION

domain, so the proxy A forward the INVITE request to the server of SIP domain B. The
proxy B finds the UAS and forward INVITE request to it. The response of UAS should
go through the same path back to UAC. The proxy is also useful for enforcing policy (for
example, making sure a user is allowed to make a call) and performing authentications
. In addition, a proxy interprets and, if necessary, rewrites specific parts of a request
message before forwarding it.

UA UASC
Forwarding

Response

Proxy A Proxy B
INVITE

Response

exchanging

Figure 2.4: The example communication with proxies

2.2.3 Registrar

The registrar is a server that accepts requests for registration and places the information
it receives from those requests into the location service for the domain it handles[14].
In Figure 2.5, the registrar receives a register request message from the user agent and
stores the information in the message into the location database. If the operation is
successful, it reply to user agent with a 200 OK response. A user agent has to make a
successful register in its SIP domain, otherwise, it can’t receive any message from the SIP
server. The information in location service is used by proxy and redirect server. When
a proxy or redirect server receives an INVITE request, it has to consult with location
service to get the information for the request, e.g., addresses required by the request.
A registrar is typically integrated with a proxy or redirect server. Sometimes registrar
server can be a simple table that contains the records of all registered users.

UA
Register

200 OK

Registrar Location Database

Store

Figure 2.5: The example communication with registrar

2.2.4 Redirect Server

The redirect server is a server that accepts SIP requests from clients, maps the new
addresses and sends required addresses back to the clients[14]. The difference between
redirect server and proxy server is that the redirect server generates 3xx responses (the
classification of response messages will be discussed in Section 2.3.2) to requests but does
not initiate its own SIP request. The redirect server never forwards the request to UAS

2.3. SIP MESSAGES 9

or other SIP servers. In Figure 2.6, the UAC sends INVITE request message, which is
same as the message sent to proxy server, to redirect server. The redirect server consult
with location service and get the address of UAS and sends it back to UAC. Then the
UAC can communicate with UAS through the address returned from redirect server.

Redirect Server

UAC UAS

RESPONSE #2

Response #1IN
V

IT
E

#1

INVITE #2

Figure 2.6: The example communication with redirect server

2.3 SIP Messages

In SIP, messages are utilized as means of communication between SIP network elements.
The SIP messages are classified into two types: REQUEST and RESPONSE. Both types
use a basic format to construct the message. It consists of a start-line, a message header
that contains one or more header fields, an empty line indicating the end of the header,
and an optional message-body[12]. The structure of message can be shown as:

generic-message = start-line
[message-header]
CRLF
[message-body]

The following is an example of a real SIP message:

10 CHAPTER 2. SIP INTRODUCTION

INVITE SIP:office@tudelft.nl SIP/2.0
From: sip:home@container.com
To: sip:office@tudelft.nl
Via: SIP/2.0/UDP 135.180.130.133
Contact: ¡client¿friend3@tudelft.nl
Call-ID: 0077@10.0.0.1
CSeq: 1 INVITE
Expires: Fri, 01 Jan 2010 16:00:00 EST
Accept-Language:en
Content-Type: application/sdp
Content-Length: 174

v=0
o=mhandley 29739 7272939 IN IP4 126.5.4.3
s=SIP Call
t=3149328700 0
c=IN IP4 135.180.130.88
m=audio 49210 RTP/AVP 0 12
m=video 3227 RTP/AVP 31
a=rtpmap:31 LPC/8000

2.3.1 SIP Request

An SIP request is the SIP message sent from a client to a server for the purpose of
invoking a particular operation. We present the structure of the request message below,
it consists of three parts:

Request = Request-line
[message-header]
CRLF
[message-body]

• Request-line The Request-line begins with a method token, such as INVITE,
and following the SIP version number. Then, the different types of headers
contains the information of sender and the properties of the session requested[13].
For example, an INVITE request-line can be:

INVITE SIP:office@tudelft.nl SIP/2.0

The most important elements in request-line is method. The method states the
primary function of a request that decides what type of the message is and what
operations should be executed. SIP uses six methods[3]:

1. INVITE: This method indicates that a user or server is being invited to
participate in a session. The message contains a description of the session,
using Session Description Protocol (SDP), and the type of media that is to

2.3. SIP MESSAGES 11

be used for the session, caller2 and callee3 addresses, user location, caller
preferences, and desired features for the response. An INVITE request may
be sent during a session on holding to modify the session characteristics.

2. ACK: This method is used with INVITE method. The purpose of ACK is to
confirm that the client has received a final response to an INVITE request.
The ACK can contain the message body which confirm the final session de-
scription to be used by the callee. But it is not necessary. If there is no
message body with ACK message, which means the callee accepts the session
description in INVITE request.

3. OPTIONS: This method Queries a server about the capabilities of the called
party. A called user agent may also send an OPTIONS message reflecting how
it would respond to an INVITE if it is in urgency. A server may respond to
this request if believes it can contact the user.

4. BYE: The BYE can be generated by all communicating parties to indicate
other one to end the call. A BYE is forwarded after a party has released the
call. The other party that receives BYE has to release transmitting streams.

5. CANCEL: The CANCEL is used to end a pending INVITE request but does
not affect completed requests. For example, a proxy server has received a
response to one of its parallel searches, the other response should be canceled.
In practice, only the INVITE is canceled.

6. REGISTER: This method is used by a client to register its address to an
SIP server. The client may be in any locations in the same domain under the
server. Usually, a user agent may register with a local server on startup by
sending an IP multi-cast to ”all SIP servers” (sip.mcast.net,224.0.1.75).

• Header fields An SIP header is the description of the references in a SIP message,
for example, the host address, the destination address, call sequence number etc.
Each of the headers in the SIP message contains a number of fields. The contents of
these fields are decided by UAC to inform the UAS that what is the proposition for
the required session. These header fields form the basic architecture of SIP message.
There are many header fields defined in RFC3261, but not all the fields have to
present in a header. Only several header fields are obligatory to be included in all
the headers, they are Via, To, From, CSeq and Call-ID. We give the description of
these header fields and other several useful header fields.

– To: This field identifies the recipient of the request message. It can be the
name-address (URL) or number-address (numeric IP address).

– From: This field indicates the initiator of the SIP request message. It is
copied from the request to the response by server. It is name-address or
number-address.

– Via: This field indicates the path that the request has traversed so far, and
used to ensure that the response message takes the same inverse path as the

2The participant who initializes a call
3The participant who receives a call from the caller.

12 CHAPTER 2. SIP INTRODUCTION

request message. The client makes the request with a Via field containing
its host name or network address and the port number at which it wishes to
receive responses. Each subsequent proxy server that forwards the request
adds its own additional Via field before any existing Via fields.

– CSeq: The name of the field comes from the Command Sequence. It contains
the request method (for example, INVITE), and a sequence number.

– Call-ID: It identifies a particular SIP invitation or all registrations for a spe-
cific client uniquely. A multimedia conference results in several calls with
different Call-IDs. The REGISTER and OPTIONS methods use this param-
eter to match requests and responses.

– Contact: This parameter provides a URI (Universal Resource Identifier) that
the user can be used for further communications. For example, when the
INVITE request is forwarded, the request message is sent to both To address
and Contact address. Both parties can response the request and set up the
communication.

– Content-Length: This field indicates the length of the message body, in deci-
mal number of octets.

– Proxy-Authenticate: This field is used to support a proxy authentication
operation.Its value is verified by authentication scheme, and the parameters
that are applicable to the proxy for the operation.

• Message Body A message body is the data that describes the properties of the
session. Before we set up a session, the participants must agree on the media they
will use to communicate with each other. This media is described in the message
body using SDP (Session Description Protocol), which is one of the most important
supporting protocols to IP Call processing.

SDP defines a session as a set of media streams. Due to the properties of the
media streams, a SDP description should contain the following information about
a session:

– The name of the session and its purpose.

– The time during which the session will be active.

– The information needed to build a session, such as media type, transport
protocol, media format etc.

Here is an example of a message body:

v=0
o=mhandley 29739 7272939 IN IP4 126.5.4.3
s=SIP Call
t=3149328700 0
c=IN IP4 135.180.130.88
m=audio 49210 RTP/AVP 0 12
m=video 3227 RTP/AVP 31
a=rtpmap:31 LPC/8000

2.3. SIP MESSAGES 13

A message body contains several optional fields. The normally used optional fields
are explained in the following:
v=Protocol version
o=owner/creator and session identifier
s=session name
c=connection information
u=URI of description
e=e-mail address
t=time the session is active
r=repeat times
m=media and transport address

2.3.2 SIP Response

The SIP response is the SIP message to indicate the state to a request. The difference
between a request and a response in the message structure is only the start line. So, the
response message can be shown as:

Response = Response-line
(general-header — response-header — entity-header)*
CRLF
[message-body]

The response line consists of SIP-Version, Status-Code and Reason-Phrase. Where the
SIP-Version is the version of the protocol being used by the message, for example,
SIP/2.0. The Status-Code is a 3 digit value. The Reason-Phrase is a short text string
that explains Status-Code[13].

The example of the an SIP response message as following:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 135.180.130.133
From: sip:home@container.com
To: sip:office@tudelft.nl
Call-ID: 0077@10.0.0.1
CSeq: 1 INVITE
Content-Length: 0

SIP has six classes of response status code, using the first digit to indicate the different
classes.

• 1xx: Information responses. It indicates that the request has been received and
is being processed. Note at this time, it does not know if the request is forwarded
successful.

Typically, the proxy server send a response message with the status code 100 (Try-
ing) when it starts processing an INVITE and user agents send response message

14 CHAPTER 2. SIP INTRODUCTION

with the status code 180 (Ringing) that means the callee has received the request.
This is similar to the ringing of a traditional telephone.

• 2xx: Success response. The request has been successfully processed and accepted.
For example, when the callee pick up the phone, the response with code 200 (OK)
will be sent.

A UAC may receive several 200 messages to a single INVITE request because of
forking proxy. The forking proxy can fork the request so it will reach several UAS
and each of them will accept the invitation and reply 200 response. In this case,
each response is distinguished by the tag parameter in To header field.

• 3xx: Redirection responses. It means the server has to do more actions to complete
the request process. A redirection response presents information about the user’s
new location or an alternative service that the caller might use to reach the callee.
Usually, it it sent by proxy server. For example, when a proxy server receives a
request but can’t process it for any reason, it will send a redirection response to
the caller and put another location into the response. The caller can use this new
location information to find the callee.

• 4xx: Client error responses. The request had an error or could not be processed
by the server.

• 5xx: Server error responses. The request is valid but the server failed in processing.

• 6xx: Global failure responses. The request could not be processed by any server.

The message body of a response message is same as the message body that we have
introduced in request message. Normally, the response message doesn’t has the message
body.

2.4 SIP Transaction Models

A transaction is a sequence of SIP messages exchanged between the SIP network ele-
ments. It consists of one request and all responses to that request. The different models
can be used for different purposes. We show a typical transaction model to explain the
basic operations in an SIP communication.

From the Figure 2.7, we can see that there are six steps to finish a session:

1. The proxy server receives an INVITE request from a UAC and responses a 100
Trying message, which means that the INVITE request is valid and is forwarded
to the UAS.

2. When the UAS receives the INVITE request, it replies a 180 Ringing response to
the server. This message will be forwarded to the UAC in the same inverse path.

3. When the UAS decides to accept the request, it sends a 200 OK response. This
message is also forwarded by the proxy server to the UAC.

2.4. SIP TRANSACTION MODELS 15

UAC UAS

INVITE

100 Trying INVITE

180 ringing180 ringing

200 OK200 OK

ACK

Media Session

BYE

200 OK

Proxy Server

Figure 2.7: A typical SIP transaction model

4. The UAC sends an ACK request message to the UAS directly, because at this
time, the UAC obtained the location of the UAS from the information in previous
responses.

5. The two parties start the session following the agreement in the INVITE message
body.

6. When the UAS closed the session, it send a BYE message to the UAC. Note that
both parties can send a BYE message to inform the other party that it wants to
close the session.

2.4.1 Transaction with Proxy Server

The main operations of the proxy server are depicted in Figure 2.4. Here we make a
simple explanation and describe another function of the proxy server, which is forking.

First, the UAC sends an INVITE request to its SIP service provider, which is the
proxy server A. The server reads the message and gets the URI from the To header field.
Because the callee is not in the same domain, the server looks up the callee’s domain
address from its database and forwards the request to the domain B. With this operation,
server A has to put its address in the Via field as second Via header field.

Second, proxy server B receives an INVITE request from proxy server A and deter-
mines that the UAS is in its domain. It looks up the location service for the UAS by
name. In this case, the INVITE request is forwarded to UAS. The proxy server B has
to add its address in the Via header field too.

16 CHAPTER 2. SIP INTRODUCTION

Third, the UAS generates the response to the request. Such response is forwarded
to the UAC following the same way. Note that when the proxy server is forwarding
the response to the UAC, it must remove its address from the Via header field, then
forwarding it.

After these three steps, the proxy server quits from the communication between the
UAC and the UAS. The response contains the location information of the UAS, so the
UAC can find UAS directly.

The other function of the proxy server is forking a request to several parties. In this
case, we can call the proxy server a fork server. In the following, we present an example
of forking message by a proxy server.

UAC Proxy Server

INVITE

100 Trying

180 ringing

200 OK200 OK

UAS 1 UAS 2

INVITE #1

180 ringing #1
180 ringing #2

INVITE #2

200 OK

BYE

Media Session

ACK

CANCEL

200 OK

Figure 2.8: Forking SIP request through proxy server

The basic operations of the proxy server the same as described above. Only two
operations are different. The first one is when the proxy server forwards the request to
the UAS, it forwards a copy of the INVITE request to all destinations. The second one
is that if one of the UAS accepts the request and replies 200 OK already, it will send a
CANCEL message to all other UASs to cancel the pending requests.

2.4.2 Transaction with Redirect Server

The redirect server does not forward the request to other parties. It only receives the
request and generates a response. As the shown in Figure 2.6, when the redirect server
receives an INVITE request, it consults a location server to determine where to redirect
the invitation to. The response should be the address of the next hop to find the
destination. The other operations in this model are the same as the operations in proxy
server.

2.4. SIP TRANSACTION MODELS 17

Considering the properties of redirect server, it is suitable to be used in SIP
mobility[5]. In Figure 2.9 , we depicted a simple example for SIP mobility.

UAC

Redirect Server B

Redirect Server A

UAS

UAS

Moving

Register

1

2

 3

4

5
6

Figure 2.9: The model of using redirect server in SIP Mobility

In Figure 2.9, the UAC sends an INVITE request to the redirect server and gets the
current location of the UAS. During the communication, when the UAS moves to the
subnet B, it should send a re-invite message to the UAC to inform it to change location
where the media sent to. In this case, the UAS should register in the redirect server in
the domain B, and the redirect server B informs the redirect server A that the UAS in
its domain now. After that, if there is a request for the UAS, the redirect server A will
return the address of the redirect server B.

2.4.3 Transaction of Register

From the previous part, we know that no matter what kind of the server is used, it has to
use location service to determine the location of the callee. In fact, the location service
can simply be a table handled by an SIP server. The function of the location service is
to return the address of the callee. The question is how to implement location service?

In SIP, the solution to this problem is using the REGISTER request to construct the
database of location service. Following is an example of a REGISTER request:

18 CHAPTER 2. SIP INTRODUCTION

REGISTER sip:tudelft.nl SIP/2.0
From: sip:home@container.com
To: sip:office@tudelft.nl
Via: SIP/2.0/UDP 135.180.130.133
Call-ID:0077@10.0.0.1
CSeq: 1 REGISTER
Contact: ¡client¿friend3@tudelft.nl
Content-Length: 0

In this example, the REGISTER request registers a user home at the tudelft.nl server.
After the server processed this request successful, any invitation it receives for sip:
home@tudelft.nl will be redirected or forwarded to the address in the Contact header
field: friend3@tudelft.nl.

The server returns a 200 OK response that lists all the current registration records
for the user home. Because there is no Expires header field, this record will last until
another registration request to override it.

2.5 Conclusion

In this chapter, we described the main aspects of Session Initiation Protocol. First,
we learned the basic features of SIP and what it can do. Then we defined the basic
elements in SIP network and explained the function of each element. The following
part discussed the SIP message and transaction models. Learning the detail of the SIP
message could help us to understand different operations in transaction models. The
transaction models are the implementations of SIP, they contain many operations with
different SIP messages. We integrate all aspects in the models to understand SIP clearly.

SIP Benchmark 3
SIP is regarded as the next generation signaling protocol, it is very useful in Voice over
IP (VoIP), Videoconferencing and mobility network. To the network processor design,
we have to know the performance and characteristics of the protocols that are used in
the network. The SIP benchmark can provide us the performance and architectural char-
acteristics of SIP. It helps us to determine the complex and time-consuming functions
of the SIP protocol that should be implemented in hardware in order to speed up the
performance of the network processor.

In the previous chapter, we discussed in detail the Session Initiation Protocol (SIP).
In this chapter, we present the SIP benchmark suite that cover several main aspects of
SIP. This chapter is organized as follows. Section 3.1 presents the description of SIP
implementation, which is an exist SIP application. Section 3.2 discusses the implemen-
tation of benchmark in detail. It goes from the basic methodology to each benchmark
implementation for each function. Section 3.3 introduces the simulation environment,
we use SimpleScalar Tools for simulation. Section 3.4 presents the conclusions.

3.1 SIP Implementation

Based on RFC3261, there are several SIP implementations available now, such as siproxy,
OSIP, SIP Express Router (SER) etc.. In our benchmark, we use SER as the original
application that is an open source software developed by iptel company[11]. We modify
the source code to implement our benchmarks. The source code can be download from
the web site of iptel company.

3.1.1 Architecture of the Software

SIP Express Router is a full functional SIP server application. It implements almost all
the functions that are described in RFC3261. The program has two parts. One part is
the main program that includes program startup, main function, parameters definition
and module interface. The other part is the modules that implement more functions as
modules. The module can be loaded into the server to execute some special operations
or removed from the server if a module is not used any more.

Here we focus on the first part, this part is more important to a server and has more
complicated functions than the second part. We give the program flow chart first:

1. Startup: Startup is the initialization of the program[11]. It includes:

• Processing Command Line Parameters: Such function was done by getopt to
get the parameters in.

19

20 CHAPTER 3. SIP BENCHMARK

Parser Message

Action & Forward

Clean Up

 Startup

Receive Data

Figure 3.1: The architecture of the SIP implementation

• Parser Initialization: It contains the function init hfname parser that initial-
izes hash table in header field name parser and the function init digest parser
that initializes hash table in digest authentication parser.

• Malloc Initialization: It uses a modified malloc function to make the server
faster. The initialization creates internal data structures and allocates mem-
ory region to be partitioned.

• Timer Initialization: The server need a timer for various subsystems of the
server which must be called periodically regardless of the incoming request.

• FIFO Initialization: SER has built-in support of FIFO control. It means that
the running server can accept commands over a FIFO pipe.

• Built-in Module Initialization: The modules can be either loaded at runtime
or compiled in statically. In this step, the required modules are compiled
statically.

• Server Configuration: In this step, the server is configured through a con-
figuration file. The configuration file is C-shell like script which defines how
incoming requests should be processed.

• Interface Initialization: The server will try to obtain list of all configured
interfaces of the host which it is running on.

2. Receive Data: In the server, a request or response is represented as sip msg
structure. In this step, the structure is allocated. The received message was
copied from original field to a backup field. In the next steps, the operations are
only made on original received message.

3. Parse Message: Parsing message is very important and one of the most
time-consuming operations of a SIP server. A header field parser can be either

3.1. SIP IMPLEMENTATION 21

in server core or in a module. Normally, only most often used field parsers are
configured in the server core. We will discuss some functions of parsing message
later.

4. Action & Forward: After the message parser, a received message is parsed and
a sip msg structure is filled. The server has to do some operations to meet the
requirement of the message, for example, if it is a response, the server should
forward message to UAC or other proxy. We will give some detail of this part later.

5. Clean Up: When the operations to a message are finished, the server should
destroy the structures and release the memory.

3.1.2 Underlying Functions

In this part, we focus on several important functions of SIP server. We chose the functions
in a simple way that is the most time-consuming and complex functions. We discuss
the function parse msg first, subsequently discuss run action and forward reply. After
message parser, if the message is a request then basic sanity checks will be performed
(make sure there is a first Via and parsing was successful) and the message will be
passed to routing engine (run action). If the message is a response, it will be forwarded
to destination. This operation is more simple than routing engine.

• Parse msg: We have known that a SIP message consists of message header and
optional message body. The message header consists of the first line and a number
of header fields. The first line determines the type of the message and the header
fields provide additional information that is needed by client or server to process
the message successfully. The structure of this function can be shown as Figure
3.2:

buf, len, msg

parse_first_line

parse_headers

type?

request

response

forward_replyrun_action

Figure 3.2: The flow chart of parse msg

22 CHAPTER 3. SIP BENCHMARK

– Parse first line function only operates on the first line of SIP message to find
what type it is. It uses matching key word to find the types. For example,
the first character of the first line is I(NVITE) or R(EGISTER) can dedicates
the type of the message. If the type is response, the program should get the
status code that is a three digital number and save it. This function will fill
in msg start structure.

– Parse headers parses all header fields of SIP message. Only the fields that
presented in a message header will be parsed. In SER, not all header fields
have been implemented. Only following header fields can be recognized:
Via, To, From, CSeq, Call-ID, Contact, Max-Forwards, Route, Record-Route,
Content-Type, Content-Length, Authorization, Expires, Proxy-Authorization,
WWW-Authorization, Supported, Require, Proxy-Require, Unsupported, Al-
low, Event.

• Run action: This function is one of most complicated part in the server. After
the server received a SIP message, it was converted into sip msg structure. If the
message is a request, it will be passed to run action. The function accept two
parameters, one is the list of actions to be processed ,an other is sip msg structure
that to be processed.
There is a big switch statement in this function. Each case of the statement is one
command that handled by the server core itself. They are:
drop, forward, send. log, append branch, len gt, setflag, resetflag, isflagset, er-
ror, route, exec, revert uri, set host, set hostport, set user, set userpass, set port,
set uri, prefix, strip, if, module.
Each command will do operation on sim msg structure, we don’t discuss detail of
each item here.

• Forward reply: After message parser, if the message is a response, the server
simply forward it to destination. It includes several operations, such as basic
check, get socket, translate sip msg structure to buffer. In SER, the message was
forwarded stateless, so the server has to put its socket information in a Via header
field.

3.2 Benchmark Implementation

As mentioned before, SIP is a next generation application layer signaling protocol. It is
important to know how good it is and which part of SIP should be focused on during the
implementation. For this purpose, the benchmark for SIP seems necessary to measure
the performance of different parts of SIP. In our project, we make benchmark based
on SIP Express Router (SER) that we have described in last section. The benchmark
includes several parts: The first one is making input data for benchmark. Because the
benchmark has to run in a simulation environment, so we need make input data to
simulate the situation in real world. The input data should follow some rules to make
it like the data in real world mostly. Which makes the result of benchmark reasonable.
The second part is rewrite the functions that need to be measured. We have to design

3.2. BENCHMARK IMPLEMENTATION 23

a strategy to get input and give the output without affecting the original function very
much. The last part of a benchmark is result analysis. Before the benchmark is run, we
should get the expected result based on the functionalities we learned. Then we compare
the expected result with real result to find if the benchmark is reasonable. From the
simulation tool that we will introduce later, we can get more results to analysis the
different aspects of the functions.
In this section, we only discuss the first two parts. The result analysis will be put into
the next chapter.

3.2.1 Benchmark Introduction

Before we create benchmark for SIP, we should introduce the general knowledge of bench-
mark. A benchmark is a standard by which others can be measured and judged[7]. In
the computer realm, any program that is used to measure performance can be called a
benchmark. It usually done as a basis for comparison. For example, how fast the system
A is compared with system B? Typically, several aspects of computers can be studied
with a benchmark[3]:

• Raw performance of a complete system.

• Raw performance of a specific subsystem (microprocessor, memory, disk interface
etc.).

• Performance of a computer running a typical suite of applications.

• Performance of a computer running a specialized application.

• Performance of a server on a network.

The benchmark can be classified in two categories: Artificial and Living. Artificial
benchmarks measure raw performance. They use fixed size of data types as input data
to individual parts of a system. The results reflect the difference between these individual
parts on that fixed input data. It can be used to compare the different parts of a system.
Living benchmarks apply performance analysis to real world task. They can be changed
to meet the requirement of customers.

Output Data

Input Data

Simulation ResultsBenchmark

Simulation Envirement

Figure 3.3: The general working model of benchmark

24 CHAPTER 3. SIP BENCHMARK

Additionally, a benchmark should be accuracy, scalability and representativeness.
That means a benchmark should reflect the situation in real world; It should be suitable
for different requirements without large modification; It should test almost all function-
alities of a testing system and present each aspect accurately.

3.2.2 Benchmark for SIP Implementation

When we design the benchmark for SIP, we should make it clear that several steps should
be implemented. First, we make the benchmark only in function level. Each benchmark
measures or tests one or more functions. The second step is defining input data and
how to generate it. Then we decide which functions should be involved. In our project,
we make benchmarks for three functions which will be described later. The last step is
result analysis, the result should reflect the characteristics of SIP that we want to know.

• Input and Output How to define the input data type and structure is one of the
most important problems of a benchmark. Generally, we see that the input data
to a SIP server is SIP message and the output is SIP message too. But from the
previous chapter, we know there are a number of types of SIP messages. Different
type of messages should involve different operations. So we define the type and
structure of input data first.

– Input Data Structure: To a real SIP proxy server, the input data (SIP
message) should be came from input port one by one. The number of input
data depends on several conditions, such as the number of users, the network
capacity, buffer size etc. Normally, a server accept thousands of SIP messages
per second. In our benchmark we create an input file to instead of the real
incoming SIP messages. The input file contains thousands of SIP messages.
The structure of the input file is shown as Figure 3.4.

msg $ $ msg $ msgmsg $

Figure 3.4: The structure of the input file

In the Figure 3.4, we can see that we use a symbol “ $ ” at the end of each
message. It can be considered as a stop symbol, which helps the program to
recognize the messages one by one. We make a tool to generate such input file
automatically before we start running benchmark in simulation environment.
In the simulation, the program reads the input file first and put all content of
the file into buffer. If we read file each time when we parse each message, it
will cost a lots of time for reading during the simulation. So the better way
is loading the input file into the buffer. When the program parses the SIP
messages, it starts from the beginning address of the buffer where the input
file saved. When it meets a stop symbol, the program knows that the first

3.2. BENCHMARK IMPLEMENTATION 25

message is over. In the next time, it skips the stop symbol and starts to read
the next message till meets an other stop symbol.
In Figure 3.2, we see the input data to function parse msg is a serial param-
eters, i.e. buf, len, sip msg. Where the buf is the start address of the buffer
where a received message is stored in. The len is the length of the message,
in decimal number of octets. The sip msg is a SIP structure that is the most
important structure in this program. The result of the message parser is filling
this structure.

– Input Data Types: As we mentioned before, there are a number of types
of SIP messages. But from the functionalities of the program, we see that the
different operations only based on the request, response or register messages.
So, we classify the input data in the three classes: request, response and
register though there are many different types of messages in each class. What
percentage of each class occupation in an input file is the most important
problem here.

30

60

10

0

10

20

30

40

50

60

70

Request Response Register

%

percentage

Figure 3.5: The distribution of the each class of messages in an input file

In Figure 3.5, we see the distribution of each class in an input file. The request
message occupies 30% and response message occupies 60%, the register mes-
sage only takes 10% in an input file. The decision comes from the following
rules:

1. When we review the typical transaction model of SIP in Figure 2.6, we
find that it only needs one request (INVITE) to set up a session. Note
that the following request ACK or BYE doesn’t pass the proxy server.
And there are two responses (180 ringing, 200 OK) need to be passed by
server in the model. Consider a forking server, it receives more than two
responses during setting up a session.

2. We know every UA should register in server when it startup or when it
moves to other SIP domains. That means if the UA moves only in one

26 CHAPTER 3. SIP BENCHMARK

SIP domain, it only needs to register once. So the number of register
operation is small.

• message parser Message parser is one of the most time-consuming part in SIP
server. The main function of this part is parse msg. The Figure 3.2 shows the
work flow of this function. The input of this function are three arguments, which
are buf, len and sip msg. We make benchmark for this function in several steps:

1. Making a program to Generate the input file automatically. The program is
designed to generate SIP messages following the rules of the message distribu-
tion and types that we defined before. The structure of the file should meet
the requirement exactly. That means the program has to write a symbol “ $
” at the end of each message. We make several input files that contain 500,
1000, 2000, 3000, 5000 messages individually. The program is wrote to get the
input file as an argument and read the content of the file into buffer. There
are two pointers. One is start pointer that point to the beginning address of
the file. The other is end pointer that keeps increasing from the beginning
address till meets a stop symbol. The program calculates the number of char-
acters between these two pointers as len. The start pointer is assigned to buf.
The program creates a sip msg structure and initializes it as zero. Then it
can start to parse the message.

2. The first step of parse message is parsing the first line. Because the different
types of messages are determined by the first line, so this function is the most
important function in parse msg. In this function, the program reads the first
character of the line and compares it with several key words. The examples
are given in Figure 3.6.

First Char. Msg. Type Subsequent Operation

I or i

S or s

R or r

C or c

Request

Request

Response

Register

INVITE, get target address

get status code

get domain name or address

CANCEL, get target address

Figure 3.6: The examples of matching the first character

After this operation, the program should set a flag to mark the type of this
message. If the first character is not matched, the flag will be set to ERROR.
Based on different types of the message, the specific operations has to be done.
For example, to a response, the program has to get the status code and verify
if it is valid. The return data of the function is the address to the end of the
first line. So in the next step, the program can start after the first line.

3. Parse header fields is the following work. The header fields of a SIP message
includes five compulsory fields and a random number optional fields. Because
of this property, the program should only parse the presented header fields
in a message. The function is done in parse headers. The input data to this
function is sip msg, flag, next, where sip msg is a SIP structure, flag indicates

3.2. BENCHMARK IMPLEMENTATION 27

what type it is and next is to show if there is an other header field doesn’t
be parsed yet. The program invokes the sub-function get hdr field for each
header field. This sub-function parses a header field per time and gets the
type of the field, verifies the content of the header field. The return data is the
type of the header field. Then the program fills each items in SIP structure
sip msg.

• Action and Forward Based on the result of the message parser, the program does
two operations to finish its work: Action and Forward. We put these two function
together because they are the parallel forks in program flow. As we discussed
before, if the message is a request, it will goes to Action, or it will goes to the
other way - Forward.

sip_msg, List[0]

ERRORdo_action ()

List[0] = 0?

ret = 0?
next = 0?

return ret

yes

no

yes

no

Figure 3.7: The work flow chart of action

– Action is the operation that executes on the SIP message following the user
commands. The operation is done in function run action with the input
arguments – sip msg and command list. Here the sip msg is the result of
message parser.
First, the program check if the command list is null, if it finds command
items,then go to do action. There is a big switch statement in this func-
tion. Each case of the statements presents a type of command, such as drop,
forward, log, set uri etc. For example, if the first command is forward, the
message will be either forwarded to Request URI of the message or to IP
or host that given as parameter. If the command is executed successful, the
function returns true and the program executes the next command if exist. If
the return status is false or no command left in the list, the program return to

28 CHAPTER 3. SIP BENCHMARK

main function. Note that the command list is translated from configuration
file in the server startup.

– Forward is a simple function to forward response message to destination. The
only thing that we should take care is the updating Via header field. The
function forward reply does all these things about forwarding. The input data
of this function is sip msg that is the result of message parser. If the program
configures a module to do this operation, the program invokes the module
response f, otherwise, it has to forward message stateless. Which means it
needs the second Via header field. The program first checks the second Via
header field, then removes the first one and calls msg send to send message
out.

3.2.3 Message Generation Tool

When we run the benchmark for simulation, we need thousands SIP messages as input
data. For convince, we make a tool to generate SIP messages automatically. The gen-
erated messages are write in a file in a required order. Which means we insert a stop
symbol “ $ ” at the end of each message. It helps program reads the message individually
like we mentioned before.

initialize file

msg_no − −
msg_no = 0?

no

yes

write first line

write five necessary
header fields

write optional
fields randomly

close file
and return 1

Figure 3.8: The flow chart of message generation tool

First, how to create the first line is very important because the first line determines
the type of the message. We use random number to control the percentage of each class
of message. For example, we put random seed as 10, so each number from 0 to 9 has 10%
probability to be chosen. We assume that the register message is chosen if the returned
random number is 3, which means the probability to create register message is 10%.

3.3. SIMPLESCALAR TOOL SET 29

Random(10) Percentage Types

Request

Register

Response

10%

0, 1, 2 30%

3

4 − 9 60%

Figure 3.9: The definition of percentage of each type of the message

The second part is how to create header fields in a reasonable way. Following the first
line, five necessary header fields have to be created, they are To, From, Via, Call-ID,
CSeq. We should note that the response message needs the second Via field, so if the
message is a response, we add an other Via header field in the message.To other optional
header fields, we divide them into two parts. One group is often used header fields named
as A, which consists of Contact, Subject, Content-Length, Content-Type, Max-Forward
and Route. The other optional header fields are grouped as B, it includes User-Agent,
Supported, Unsupported, Require, Priority, Recontact, Accept-Language, Organization,
Record-Route, Accept, Content-Disposition, Allow, Proxy-Require, Authorization, My-
State, Event. The fields in group A are often used because they give the normal and
useful information of the user. We also use random number to control the occupancy
percentage of these two groups. In each time the program chooses a header field to write
in the file, the fields in group A has double probability to be chosen than the fields in
group B.

3.3 SimpleScalar Tool Set

The SimpleScalar tool set is a system software infrastructure used to build modeling
applications for program performance analysis, detailed microarchitectural modeling,
and hardware-software co-verification[1]. It can emulate the Alpha, PISA, ARM, and
x86 instruction sets. The tool set consists of an assembler, a linker, a simulator and a
visualization tools for the SimpleScalar architecture[4].

Figure 3.10 depicts the working flow of SimpleScalar tool set. For example, our
benchmark is wrote in c language, we have to compile it by SimpleScalar GCC that
is retargeted toward to SimpleScalar architecture. The SimpleScalar GCC generates
assembly that to be assembled by SimpleScalar GAS and generates object files. The
SimpleScalar GLD links object files with libraries to generate SimpleScalar executables.
This executable can be run in simulators provided by SimpleScalar tool set, such as
sim-fast, sim-ourorder, sim-safe etc..

The SimpleScalar architecture is derived from the MIPS-IV ISA. The tool suite de-
fines both little-endian and big-endian versions of the architecture[4]. Additional, there
are three instruction encodings of SimpleScalar instructions: register, immediate and
jump formats. All instructions are 64 bits in length. Shown as Figure 3.11. The regis-
ter format is used for computational instructions. The immediate format supports the
inclusion of a 16-bit constant. The jump format supports specification of 24-bit jump
targets. Each instruction format has a fixed-location that is a 16-bit opcode field, it

30 CHAPTER 3. SIP BENCHMARK

SimpleScalar
GCC

SimpleScalar
GAS

SimpleScalar
GLD

Host C
compiler

Simulator Results

FORTRAN

F2C

Object files

SS libc.a
SS libm.a

SS libF77.a

Simulator source
(e.g.,sim−outorder.c)

executables
SimpleScalar

Precompiled SS

Binaries (test,SPEC95)

benchmark source
C

benchmark source

assembly
SimpleScalar

Figure 3.10: The overview of SimpleScalar tool set

provides a fast instruction decoding.

Immediate format:

Register format:

Jump format:

16−annote 16−opcode 8−rs 8−rt 8−rd 8−ru/shamt

0

0

0

16−annote 16−opcode 8−rs 8−rt

16−annote 16−opcode
63 32 31

32 3163

63 32 31
16−imm

6−unused 26−target

Figure 3.11: SimpleScalar architecture instruction formats

In our simulation, we use the simulator sim-outorder that is the most complicated
and detailed simulator in this tool set. This simulator supports out-of-order issue and
execution.

In Figure 3.12, it is clear that the work of sim-outorder simulator can be divided into
six stages. We give the briefly description for each stage.

• The first is fetch stage. In this stage, it takes the following inputs: the program
counter, the predictor state, misprediction detection from the branch execution

3.4. CONCLUSION 31

Fetch Exec

Mem

Commit
Memory
scheduler

Dispatch Scheduler Writeback

D − Cache D − TLBI − Cache Virtual memory

Figure 3.12: Pipeline for sim-outorder simulator

units. It fetches instructions each cycle and put them in the dispatch queue.

• In dispatch stage, the program decodes the instruction and renames the register.
It takes as many instructions as possible from the fetch queue per cycle and places
them in the scheduler queue. Additional, the program enters and links instructions
into the register update unit (RUU) and the load/store queue (LSQ).

• In third stage, if the register inputs are all ready, the program will locates the
instructions for it. The issue of ready loads is stalled if there is an earlier store
with an unresolved effective address in the LSQ. If the address of the earlier store
is same as the waiting one, the store value will be loaded or the load is sent to the
memory system.

• The fourth stage is execute stage. The routine gets as many ready instructions
as possible from the scheduler queue each cycle. And the routine also schedules
writeback operations using the latency of the functional units.

• In writeback stage, the routine scans the operation queue that scheduled in last
stage and gets instruction completions. When finding a completed instruction, it
goes to the dependence chain and mark the instructions that are dependent on the
completed instruction.

• The last stage is commit stage. The routine does in-order committing of instruc-
tions, updating of the data caches and data TLB miss handling. The instruction at
the head of the RUU will be committed when it is ready. The result of committed
instruction is stored in the architected register file.

3.4 Conclusion

In this chapter, we discuss the benchmark for SIP in detail. First, we introduce the
implementation of SIP, which is an exist application that is named SIP Express Router
(SER). Then we describe the detail functionalities of SER. It helps us to determine which
parts of the application are more important. This is the fundamental of our benchmark.
Then we introduce the benchmark with the definition, the methodology. Based on
this knowledge, we make our benchmark in function level. The whole benchmark suite

32 CHAPTER 3. SIP BENCHMARK

for SIP consists of three benchmarks: message parser benchmark, action benchmark
and reply benchmark. Each benchmark consists of input data, simulation processing
and expected results. Additional, a message generation tool is created for convince to
generate the input data for the benchmarks. In the last part of this chapter, we introduce
the simulation environment.

Simulation Results Analysis 4
In the previous chapter, we discussed the implementation of SIP benchmarks and the
simulation environment. The three benchmarks are created, they are: the message parser
benchmark, the action benchmark and the forward benchmark. The three benchmarks
cover nearly all important functions in an SIP proxy server. The simulation environment
includes the cycle-accurate simulator sim-outorder from the SimpleScalar tool sets. The
profiling results are obtained by compiling the benchmarks and running the benchmarks
on the above mentioned simulator with the appropriate input data. We distinguish two
types of profiling results, namely performance-related results (in terms of cycles) and
architectural characteristics (e.g., IPC, cache miss rate etc.).

In this chapter, Section 4.1 introduces the simulation rules that describe the defini-
tions and simulation environment. Section 4.2 presents an overview of the the perfor-
mance of each benchmark in SIP server. Section 4.3 describes in detail the profiling
results of each benchmark. Section 4.4 presents the results on architectural characteris-
tics. Section 4.5 concludes this chapter with some concluding remarks.

4.1 Description of Simulation Rules

Before we run the benchmarks on the simulator, we have to state our assumptions. The
assumptions details the parameters utilized in the simulation environment and are needed
to meaningfully interpret the simulation results. A detailed description of the assump-
tions is presented in Chapter 3, therefore, only a short explanation of each assumption
is presented in the following:

• Definition of input data The input data to message parser is a file that contains
thousands of different types of SIP messages. The file is created in different sizes, we
use five files which contains 500, 1000, 2000, 3000, 5000 SIP messages respectively.
The input data for the action benchmark are an SIP structure and a command
list. We use three commands here, they are Len GT, Forward UDP, Drop. The
input data for the forward benchmark is only an SIP structure. Note that the SIP
structure is filled by message parser.

• Sim-outorder simulator The simulator entails a 2-way superscalar processor. It
has 64 KB direct-mapped level 1 (L1) data and instruction cache with 1 clock cycle
latency and 1 MB unified level 2 (L2) cache with 6 clock cycles latency.

• The base machine It consists of 4 integer ALUs, 1 integer MULT/DIV
unit, 4 floating-point adders, 1 floating-point MULT/DIV unit, 2 memory ports
(read/write).

33

34 CHAPTER 4. SIMULATION RESULTS ANALYSIS

• Simulation times We run each benchmark three times using each input file, then
we get the average of the three times as the results.

• The limitation We have to note that we have chosen to benchmark the proxy
server as it provides the widest range of functionalities and is the most complex
compared to other servers (i.e., redirect server and registrar). Finally, we must also
note that we utilized synthetically generated input data instead of the real-world
data. However, the generation of SIP messages serving as input for the benchmarks
is based on the statistics gathered from the real SIP message.

4.2 Results Overview

We give the overview of the results first. These results are measuring the performance of
each benchmark in an SIP server. It gives the number of clock cycles of each benchmark
comparison to the total cycles of the application.

50.5

18.3 18.6
12.6

0

10

20

30

40

50

60

message
parser

action forward other

benchmarks

%

clock cycles

Figure 4.1: The results of each benchmark comparison to the whole application

The results of each benchmark are presented by percentage in Figure 4.1. We see
that the message parser benchmark takes 50.5% that is the biggest part in the total
clock cycles. From previous chapter, we know that the message parser parses each line
of an SIP header, it does many comparisons to match the type of the message and the
types of the header fields. This is the most time consuming work in a server. The action
benchmark occupies 18.3% because we use three commands in our benchmark including
Forwarding command. The number of cycles are used in this benchmark is based on
the size of command list and what operations are involved. Normally, a request should
be transferred to other side also, so the forwarding command is used. The forward
benchmark only takes 18.6% in whole cycles though the response messages occupy 60%
of the input data. The reason is that the operations in this part is not complex. The
other operations including post-script callbacks take 13.1%. From the result, we can see

4.2. RESULTS OVERVIEW 35

that our benchmarks cover 86.9% operations in an executing server except the part of
startup.

In this section, we also give the results of the extreme testing, which means we give
server only one type of messages to see if the result is changed. In fact, this part is
very important because we run each benchmark under the almost same conditions. The
comparison of the results can give us the raw performance of each benchmark. In this
testing, each benchmark runs in equal times. For example, when we use the file that
contains 3000 request messages, the message parser benchmark and action benchmark
are all running 3000 times. The results of the three classes messages are given in Figure
4.2(a), 4.2(b), 4.2(c) that are concerned with the request messages, the response messages
and the register messages respectively.

46.1
41.4

12.8

0

10

20

30

40

50

parser action others

benchmarks

%

clock cycles

(a) The extreme testing using request messages

42.5 44.4

13.1

0

10

20

30

40

50

parser action others

benchmarks

%

clock cycles

(b) The extreme testing using register messages

52.9

34.5

12.6

0

10

20

30

40

50

60

parser forward others

behchmarks

%

clock cycles

(c) The extreme testing using response messages

Figure 4.2: The extreme testing of different types of the messages

In Figure 4.2, it is clear that the number of clock cycles for executing message parser
benchmark is the biggest one when using request messages and response messages. But
when using register messages, the action benchmark takes more cycles than message
parser benchmark. From the analysis of functionalities, we know that a register message

36 CHAPTER 4. SIMULATION RESULTS ANALYSIS

will invoke an operation of looking up hash table and comparing, changing, adding the
items. But in our benchmarks, it doesn’t involve the operations of the registrar, the
register messages are marked as request but unknown types. It is executed as a request
and invokes extra operations to delete it. That is why the action costs more time in this
case. In these three figures, the forward benchmark takes the least number of cycles,
which is as same as the expected result we analyzed before. The other result is in Figure
4.1, the forward benchmark takes more cycles than action benchmark only because the
response messages occupy 60% of the input data. To the functionality itself, the forward
benchmark is the simplest one of the three benchmarks.

4.3 Results of Functions

After the overview of the results, we focus on each benchmark to find the performance
of the sub-functions in it. In this part, the message parser is also the most complicated
one, and the forward benchmark is so simple that we only give a description of it.

4.3.1 Message Parser

In Section 3.2, we gave the structure of message parser. There are two main sub-functions
in it, parse first line and parse headers. The parse first line only does the work to de-
termine the type of the message and gets some related information. For example, to a
response message, it gets the status code. The parse headers does more work, it parses
all header fields that presented in the message header. Figure 4.3 depicts the number
of clock cycles for these two functions respectively. It is clear that parse headers is the
most time consuming function in a server.

10.1

87.7

2.1
0

20

40

60

80

100

parse f_line parsing header others

subfuntions

%

clock cycles

Figure 4.3: The results of sub-functions in parse message

4.4. RESULTS ON ARCHITECTURAL CHARACTERISTICS 37

4.3.2 Action and Forward

To the action benchmark, most of the work is done in main function, so we only give
description of it. To the forward benchmark, it consists several sub-functions. The
operations of these sub-functions are simple, we give details following.

• Action benchmark In the benchmark, there is a big switch statement and each
case of the statements presents a command. Each command involves some opera-
tions. So the number of cycles are used in this benchmark depends on how many
commands in command list and what operations are involved by the commands.
In previous section, we only use several often used commands, but in fact, this
benchmark can be the most time consuming one if more commands are executed.

• Forward benchmark From the analysis of the functionality, we know that the
operations of this function is not complex. It includes the socket update (remove
the second Via header field) and the sending out. We know the most important
function is the updating header field but the operation is not complicated. The
sub-function for sending out only transfers the structure of an SIP message to the
buffer, then waiting for the lower application to send it out. From the Figure 4.4,
we see that more time is spent on the memory and the buffer operations.

clock cycles

27.3

20.1

26.5

3.7

0
5

10
15
20
25
30

building buffer updating
socket

Malloc sending out

subfunctions

%

clock cycles

Figure 4.4: The results of sub-functions in forward reply

4.4 Results on Architectural Characteristics

In the work of designing network processor, we have to take the characteristics of the
protocol into account. For example, how much cache should be used in a network
processor? We have to know the performance of the implementation of the protocol
under different sizes of the cache. Which helps the designer to design the network
processor in a cost-efficient way.

38 CHAPTER 4. SIMULATION RESULTS ANALYSIS

types IPC iL1 dL1 uL2 load store APR DPR
normal 1.1485 0.0547 0.0087 0.0056 24.5 15.7 0.9314 0.9413
request 1.1168 0.0576 0.0094 0.0054 24.7 15.4 0.9300 0.9390
response 1.1876 0.0519 0.0082 0.0061 24.9 15.4 0.9351 0.9461
register 1.1184 0.0575 0.0091 0.0055 24.7 15.4 0.9277 0.9382

Table 4.1: Architectural Characteristics with Different Inputs

size IPC iL1 dL1 uL2
8K 1.2520 0.0466 0.0515 0.0067
16K 1.3390 0.0367 0.0361 0.0075
32K 1.4354 0.0271 0.0263 0.0081

Table 4.2: Architectural Characteristics with Different Sizes of Cache

We have two methods to get the results. First, we use different input datum to
determine how it changes in each characteristic. Then we set different sizes of caches to
test it again.

• Results of Different Input In this part, we define four classes input data: nor-
mal, request, response and register. The normal message means that it contains
30% request message, 60% response message and 10% register message. The other
three classes messages are same as extreme testing. That means the input file
contains only one class of messages.

In the Table 4.1, when the input messages are the response messages, we got the
highest IPC. And the iL1 is Level-1 instruction cache miss rate, dL1 is Level-1 data
cache miss rate, load/store instruction rate, branch address-prediction rate (APR)
and branch direction-prediction rate (DPR). The total number of instructions ex-
ecuted is about 78.7M and total cycles are 60M.

• Results of Different Size of Caches We know that the size of the cache can
affect the performance of processor greatly. In this part, we use different size of
caches to find out the affect to each characteristic.

Table 4.2 shows the results. We change the size of cache from 8Kb to 32Kb and
find that the performance became better with increasing of the cache size.

Additionally, we know that the cache consists of sets and block. When we change the
size of cache, we can change the number of sets or the size of block. We find the results
are different between these two ways. The input data is normal message, the results
are show in Table 4.3. We find the change of block size of L1 instruction cache can get
higher IPC under same size of cache.

4.5. CONCLUSION 39

size sets block IPC iL1 dL1 uL2
8K 128 64 1.2520 0.0466 0.0515 0.0067
8K 256 32 1.0454 0.0696 0.0531 0.0066
16K 256 64 1.3390 0.0367 0.0361 0.0075
16K 512 32 1.1555 0.0542 0.0345 0.0076
32K 512 64 1.4354 0.0271 0.0263 0.0081
32K 1024 32 1.2825 0.0396 0.0236 0.0082

Table 4.3: Comparison between Different Sets of Cache

4.5 Conclusion

In this chapter, we conclude the results of our benchmarks. First is the overview of
the results . We compared the performance of the three benchmarks in terms of the
clock cycles to determine which is the most time consuming one. In this step, the
message parser benchmark constitutes 50.5% executing cycles of the total cycles. The
action benchmark constitutes 18.3% and forward benchmark constitutes 18.6% of the
total cycles. Then, we do the extreme testing for these three benchmarks to get raw
performance. Under the same condition, the forward benchmark only constitutes 34.5%
of the total cycles, which means that this functionality is the simplest one in these
three functionalities. The message parser benchmark constitute 47.2% and the action
benchmark constitutes 42.9%. Then, we test each benchmark to get performance of the
sub-functions. To the action benchmark, there are many sub-functions and each of them
presents a command. The sub-function is invoked only when the related command is in
the command list. In the forward benchmark, the memory allocation takes more time
which means the operations in this part is not complex. We investigated architectural
characteristics in several aspects. With the increase of L1 instruction cache, the IPC is
increasing and cache miss rate is decreasing. With the same size of the L1 instruction
cache, we use small sets and big block size can provide higher performance of the network
processor. The results can help us to find the cost-efficient way when design a network
processor to implement SIP.

40 CHAPTER 4. SIMULATION RESULTS ANALYSIS

Conclusion 5
Designing cost-effective network processors is one of the most challenging of current com-
puter architecture problems. It includes the investigations of both software and hardware.
The benchmark of network protocol is part of the investigation in software. From this
work, we can find the characteristics of a protocol, for example, we implement some op-
erations that take complicated computations in hardware to speed up the performance of
network processors. From the previous chapters, we know that SIP is a promising proto-
col that has some outstanding characteristics, such as using URI to define a user, using
simple hypertext syntax and formats, feature modification etc. It can be used in many
fields such as Voice over IP (VoIP), Videoconferencing, network mobility etc. Though
there are only few SIP network exist now, the benchmark of SIP is an expected work.

In this thesis, we discuss such topic from implementation of SIP to the benchmark
results analysis. Following we will give conclusion of the work. Section 5.1 discuss the
overview of conclusion. Section 5.2 underlines some related work that should be done in
the future.

5.1 Overview Conclusion

We give the introduce of network processors at the beginning of this thesis. It answers
the questions about what is network processor and why we need it. Then some basic
knowledge about network processor design is necessary.

In Chapter 2, we described the main aspects of the Session Initiation Protocol. First,
we determined the basic features of SIP and what it can do. Subsequently, we defined
the basic elements in an SIP network and explained the functionalities of each element.
In this chapter, we also discussed the SIP message and different transaction models.
Learning the detail of SIP message could help us to understand different operations
in transaction models. The transaction models are the implementations of SIP, they
contain many operations based on different SIP messages.

In Chapter 3, we discussed the benchmark for SIP in detail. First, we introduced the
implementation of SIP, which is an exist application that is named SIP Express Router
(SER). Subsequently, we described the detail functionalities of SER. This helps us to
determine which parts of the application are more important, which is the main focus of
out investigation. We introduced the benchmark with the definition, the methodology.
Based on this knowledge, we created out benchmark suite on functional level. The
whole benchmark suite consists of three benchmarks: message parser benchmark, action
benchmark and reply benchmark. Each benchmark consists of input data, simulation
processing and expected results. Additional, a message generation tool is created for
convenience to generate the input data for the benchmarks. In the last part of this
chapter, we introduced the simulation tool set and the environment.

41

42 CHAPTER 5. CONCLUSION

In Chapter 4, we presented the results of our benchmarks. First is the overview of
the results . We compared the performance of the three benchmarks in terms of the
clock cycles to determine which is the most time consuming one. The message parser
benchmark takes 50.5% in the whole clock cycles of the benchmarks. Subsequently, we
did the extreme testing for these three benchmarks to get raw performance. From the
comparison, it is clear that Message parser benchmark is the most time consuming one,
the average number of the cycles of the three testing is 48.7% which means that this
functionality should be focused on during the implementation of SIP. Then, we tested
each benchmark to get performance of the sub-functions. To the action benchmark,
there are many sub-functions and each of them presents a command. The sub-function
is invoked only when the related command is in the command list. In the forward
benchmark, the memory allocation takes more time which means the operations in this
part is not complex. We investigated architectural characteristics in several aspects.
When using the normal input data, the IPC is 1.1485, level-1 instruction cache miss
rate is 0.0547, APR is 0.9314, and DPR is 0.9413. With the increasing of the size of
the level-1 cache, the IPC is increased and the iL1 is decreased as our expectation. The
results can help us to find the cost-efficient way when design a network processor to
implement SIP.

5.2 Main Contributions

First, we defined a procedure to create the benchmark for a protocol. It includes the SIP
implementation, functionality analysis, creating benchmarks, simulation environment,
and results analysis. The procedure can be used for other benchmarks for protocols.

Second, we described the methodology of determining the most important func-
tionality in a protocol. We divided the whole program into several functionalities and
compared them in terms of the priorities, the structure complexity, and the number of
the computations. Which helps us to determine the important functionalities.

Third, our benchmarks determined that the message parser is the most time con-
suming functionality in SIP, and increasing L1 cache size can speed up the performance
of the SIP processing. Additionally, With the same size of the L1 instruction size, using
big block size and small number of the sets can provides a higher performance of the
network processor.

5.3 Further Research

In this thesis, we have presented a benchmark suite that allows us to investigate the
performance of network processors in relation to the session initiation protocol (SIP).
In this section, we propose several research directions that can be followed to further
enhance the results presented in this thesis or widen the application set:

• The input data used in the current benchmark suite are synthetically generated
and do not completely match a real-world distribution of SIP messages. We have
chosen several distributions of SIP messages that we believe either reflect the real-
world or stress the performance of the introduced benchmarks. In order for the

5.3. FURTHER RESEARCH 43

profiling results to even better reflect a real-world distribution of SIP messages,
traces of SIP messages must be gathered. We have to note that these traces can
immediately serve as input data without major modifications to our benchmarks.

• In this thesis, we only focused on the stateless SIP proxy server. Further investi-
gation is needed to determine the functionalities of the redirect server, registrar,
and the stateful servers.

• As mentioned before, the SIP is an application level control protocol. It has to
work with many other protocols, e.g., TCP, UDP, SDP, etc. In order to arrive at
a single network processor, these protocols must also be further investigated.

44 CHAPTER 5. CONCLUSION

Bibliography

[1] Simplescalar overview, http://www.simplescalar.com, 2001.

[2] Doug Burger and Todd M. Austin, The simplescalar tool set, version 2.0,
http://www.simplescalar.com.

[3] Patrick Crowley, Mark A. Franklin, Haldun Hadimioglu, and Z. Peter, Network
processor design-issues and practices volume 1, Morgan Kaufmann Publishers, 2003.

[4] S. Donovan, The sip info method, RFC 2976, http://www.ietf.org/rfc/rfc2976.txt,
October 2000.

[5] Camarillo Gonzalo, Sip demystified, New York: MCGraw, 2002.

[6] Rich Grace, The benchmark book, Prentice Hall, 1996.

[7] The internet engineering task force (ietf), http://www.IETF.org.

[8] iptel, Iptel company, http://www.iptel.org.

[9] Jan Janak, Sip introduction, 2003.

[10] Jan Janak, Jiri Kuthan, and Bogdan Iancu, Sip express router v0.8.8 - developer’s
guide, (2002).

[11] A. Johnston, S. Donovan, R. Sparks, C. Cunningham, and K. Sum-
mers, Session initiation protocol (sip) basic call flow examples, RFC3665,
http://www.ietf.org/rfc/rfc3665.txt, Desceber 2003.

[12] Alan B. Johnston, Sip: understanding the session initiation protocol, Artech House,
2001.

[13] Stephen M. Mueller, Apis and protocols for convergent network services, McGraw-
Hill, 2002.

[14] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler, Sip: Session initiation protocol, RFC 3261,
http://www.ietf.org/rfc/rfc3261.txt, June 2002.

[15] Eli Wedlund and Henning Schulzrinne, Mobility support using sip.

45

46 BIBLIOGRAPHY

BIBLIOGRAPHY 47

Curriculum Vitae

Jiangbo Yin was born in Wrumqi of China on 05th,
December, 1975. He have studied in Electrical En-
gineering faculty of Shanghai Tiedao University from
1995-1999, and got his bachelor degree in there. From
1999 to 2002, he worked in Beijing Zhikai Official Auto-
matic Equipment Ltd. as a software programmer. His
duty is development of lower driver of Pin-printer and
deal with the problems as a consultant.

From September, 2002, he started his MSc program
in Electrical Engineering faculty of Delft University of
Technology (TU Delft) in Netherlands. In November,

2003, he started his MSc project in Computer Engineering (CE) Laboratory. He worked
on the topic “benchmark for Session Initiation Protocol (SIP)” with the instruction of
Dr. Ir. Stephan Wong. His interesting fields are: digital network, microprocessor, remote
control, and embedded system.

