X, X(x),1-27 (2004)

NOTE: This file contains the unformatted version of the following article:
S.Wong, S. Vassiliadis, S. D. Cotofana, “Future Directions of Programmable
and Reconfigurable Embedded Processors”, published in Domain-Specific
Processors: Systems, Architectures, Modeling, and Simulation, pp. 235-
257, 1SBN 0-8247-4711-9, January 2004.

Copyright © 2004 by Marcel Dekker, Inc. All Rights Reserved.

Future Directions of (Programmable and
Reconfigurable) Embedded Processors

Stephan Wong, Stamatis Vassiliadis, Sorin Cotofana

Computer Engineering Laboratory,
Electrical Engineering Department,
Delft University of Technology,
{Stephan, Stamatis, So}i@ CE.ET.TUDelft.NL

Abstract

The advent of microprocessors in embedded systems
has significantly contributed to the wide-spread utilization
of embedded systems in our daily lives. Microprocessors can
be found in devices ranging from simple controllers in power
plants to sophisticated multimedia set-top boxes in our homes.
This is due to the fact that microprocessors, called embedded
processors in this setting, are able to perform huge amounts
of data processing required by embedded systems. In addi-
tion and equally important, embedded processors are able
to achieve this at affordable prices. In the last decade, we
have been witnessing several changes in the embedded pro-

1

Copyright© 2004 by Marcel Dekker, Inc. www.dekker.com



2 S.Wong, S. Vassiliadis, and S. Cotofana

cessors design fueled by two conflicting trends. First, the
industry is dealing with cut-throat competition resulting in
the need for increasingly smaller time-to-market windows.
At the same time, embedded processors are becoming more
complex due to the migration of increasingly more function-
ality to a single embedded processor resulting most likely
in undesirable higher development costs. This has led to the
quest for a flexible and reusable embedded processor that
still must achieve the required performance levels. As a re-
sult, embedded processors have evolved from simple micro-
controllers to digital signal processors to programmable pro-
cessors. We believe that this quest is leading to embedded
processors that comprise a programmable processor aug-
mented with reconfigurable hardware. In this paper, we high-
light several embedded processors characteristics and dis-
cuss how they have evolved over time when programmabil-
ity and reconfigurability were introduced into the embedded
processor design. Finally, we describe in-depth one possible
approach that combines both programmability and recon-
figurability in an integrated manner by utilizing microcode.

[. Introduction

A technology turning point that made embedded consumer electron-
ics systems an everyday reality has to be the advent of microprocessors.
The technological developments that allowed single-chip processors (mi-
croprocessors) made embedded systems inexpensive and flexible. Conse-
qguently, microprocessor-based embedded systems have been introduced
into many new application areas. Currently, embedded programmable mi-
croprocessors in one form or another, frérbit micro-controllers tad32-
bit digital signal processors artid-bit RISC processors, are everywhere,
in consumer electronic devices, home appliances, automobiles, network
equipment, industrial control systems, etc. Interestingly, we are utilizing
more than several dozens of embedded processors in our day-to-day lives



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 3

without actually realizing it. For example, in modern cars such as the Mer-
cedes S-class or the BMW 7-series, we can find over 60 embedded pro-
cessors that control a multitude of functions, e.g., the fuel injection and
the anti-lock braking system (ABS), that guarantee a smooth and foremost
safe drive. Furthermore, the employment of embedded (micro)processors
appear to grow in an exponential curve.

In this positional paper, we describe several characteristics of embed-
ded processors and investigate how these characteristics have changed over
time driven by market requirements such as smaller time-to-market win-
dows and reduced development costs. Subsequently, we discuss two widely
employed strategies to meet such market requirements, namely programma-
bility and reconfigurability. Finally, we present a possible future direction
in embedded processor design that merges both strategies and thereby pro-
viding flexibility in both software and hardware design at the same time.

This paper is organized as follows. Section Il introduces a definition
of embedded systems, discusses the ensuing characteristics of embedded
systems, and provides an in-depth discussion of traditional embedded pro-
cessors characteristics. Section Il discusses the need for programmability
and several examples of such an approach. Section IV discusses how the
use of reconfigurability affected the embedded processors characteristics.
Section V describes a possible future direction in embedded processor de-
sign that combines programmability and reconfigurability. Furthermore,
we show an example of such an approach called the microcoded reconfig-
urable embedded processor, also called the MOLEN processor. Section VI
concludes this paper by stating several key observations in this paper.

Il. Traditional Embedded Processor Characteristics

An embedded processor is a specific instance of embedded systems in
general and therefore adhere to the characteristics of embedded systems.
Since no generally accepted definition of embedded systems exists, we es-
tablish our own definition in order to facilitate the discussion on embedded
system characteristics and subsequently on embedded processor design is-
sues.



4 S.Wong, S. Vassiliadis, and S. Cotofana

Definition: Embedded systems are (inexpensive) mass-produced ele-
ments of a larger system providing a dedicated, possibly time-
constrained, service to that system.

Before we highlight the main characteristics of embedded systems, we
would like to comment on our one sentence definition of them. In most lit-
erature, the definition of embedded systems only states that they provide a
dedicated service — the nature of the service is not relevant in this context —
to a larger (embedding) system. Consequently, when we refer to embedded
systems as mass-produced elements we draw the separation line between
application-specific systems and embedded systems. We are aware that the
separation line is quite thin in the sense that embedded systems are mostly
indeed application-specific systems. However, we believe that application-
specific systems produced in low volumes can not be considered to be
embedded systems, because they represent a niche market for which com-
pletely different requirements are valid. For example, cost is unimportant
in a low-volume production scenario contrary to the paramount importance
to achieve low cost for embedded systems. Finally, we include the possi-
bility for time-constrained behavior in our definition, because even if it is
not characteristic to all the embedded systems it constitutes a particularity
of a very large class of them, namely the real-time embedded systems.

Clearly, the precise requirements of an embedded system is determined
by its immediate environment. The immediate environment of an embed-
ded system can be either other surrounding embedded systems in the larger
embedding system or even the world in which the larger system is placed.
We can classify the embedded system requirements into:

» Functional requirementsare defined by the services that the em-
bedded system has to perform for and when interacting with its
immediate environment. Such services possibly include data gath-
ering and exerting control to their immediate environment. This
implies that some kind of data transformation must be perfor-
mance within the embedded system itself.

« Temporal requirementsare the result of the time-constrained be-
havior of many embedded systems thereby introducing deadlines



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 5

(explained later) for the service(s).
» Dependability requirements relates to the reliability, maintain-
ability, and availability of the embedded system in question.

In the light of the previously stated embedded systems definition and
requirements, we briefly point out what we think are the main charac-
teristics of more traditional embedded processors. Furthermore, we dis-
cuss in more detail the implications that these characteristics have on the
specification and design processes of embedded processors. The first and
probably the most important characteristic of embedded processors is that
they areapplication-specific Given that the service (or application in
processor terms) is known a priori, the embedded processor can be and
should be optimized for its targeted application. In other words, embed-
ded processors are definitely not general-purpose processors which are
designed to perform reasonably for a much wider range of applications.
Moreover, the fact that the application is known beforehand opens the
road forhardware/software co-desighe., the cooperative and concurrent
design of both hardware and software components of the processor. The
hardware/software co-design style is very much particular to embedded
processors and has the goal of meeting the processor level objectives by
exploiting the synergism of hardware and software.

Another important characteristic of embedded processors isdtatic
structure. When considering an embedded processor, the end-user has
very limited access to programming. Most of the software is provided
by the processor integrator and/or application developer, resides on ROM
memories, and runs without being visible to the end-user. The end-user can
not change nor reprogram the basic operations of the embedded processor,
but he is usually allowed to program the embedded system by re-arranging
the sequence of basic operations.

Embedded processors are essentially non-homogeneous processors and
this characteristic is induced by theterogeneousharacter of the process
within which the processor is embedded. Designing a typical embedded
processor does not only mix hardware design with software design, but it
also mixes design styles within each of these categories. To put more light
on the heterogeneity issue, we depicted in Figure 1 (from [7]) an example
signal processing embedded processor. The heterogeneous character can
be seen in many aspects of the embedded processor design as follows:



6 S.Wong, S. Vassiliadis, and S. Cotofana

« both analog and digital circuits may be present in the system;

» the hardware may include microprocessors, microcontrollers, dig-
ital signal processors, and application-specific integrated circuits;

» the topology of the system is rather irregular;

» the software may include various software modules as well as a
multitasking real-time operating system.

real-time controller
operating process
system
user
| ASIC | |microc0ntro|ler
< f T system bus >
v v

DSP host port host port
assembly programmable programmable ||
code DsP DsP

memory interface memory interface

i 1 3 v 1
dual-ported memory DSP analog

assembly interface
code

CODEC

Figure 1. Signal Processing Embedded Processor Example (from [7]).

Generally speaking, the intrinsic heterogeneity of embedded processors
largely contributes to the overall complexity and management difficulties
of the design process. However, one can say that heterogeneity is in the
case of embedded processors design a necessary evil. It provides better
design flexibility by providing a wide range of design options. In addition,
it allows each required function to be implemented on the most adequate
platform that is deemed necessary to meet the posed requirements.

Embedded processors anass-producedapplication-specific elements
separating them from other low-volume produced application-specific pro-
cessors. Embedded processors represent a much larger market segment in
which embedded processor vendors face fierce competition in order to gain
market capitalization. Consequently, this environment imposes a different
set of requirements on the embedded processor design. For example, such
requirements involve the cost/performance sensitiveness of embedded pro-
cessors making low cost almost always an issue.

A large number of embedded processors perfasattime processing
introducing the notion ofleadlines Roughly speaking, deadlines can be



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 7

classified into hard and soft real-time deadlines. Missing a hard deadline
can be catastrophic while missing a soft deadline only results in non-fatal
glitches at most. Both types of deadlines are known a priori much like that
the functionality is known beforehand. Therefore, deadlines determine the
minimum level of performance that must be achieved. When facing hard
deadlines, special attention must also be paid to other components within
the larger embedding system that are connected to the embedded processor
in question since they can negatively influence its behavior.

lll. The Need for Programmability

In the early nineties, we witnessed a trend in the embedded processors
market that was reshaping the characteristics of traditional embedded pro-
cessors as introduced in Section Il. Driven by market forces, the lengthy
embedded processors design cycles had to be shortened in order to keep
up with or stay in front of competitors and costs had to be reduced in order
to stay competitive. More specifically, the cost of an embedded processor
can be largely divided into production costs (closely related to the utilized
manufacturing technology) and development costs (closely related to over-
all design cycle). It must be clear that the production costs remain constant
for each produced embedded processor due to the fact that the embedded
processor design must be fixed before entering production. Since we focus
on embedded processor design and not on manufacturing, the issues con-
cerning production costs are left out of the ensuing discussion. However,
we must note that the complexity of the final embedded processor design
certainly has an impact on the production costs. The impact is exhibited
by requiring more steps in the manufacturing process and/or a more expen-
sive manufacturing process altogether. On the other hand, the development
costs on a per embedded processor basis can be reduced by amortizing the
costs over a higher production volume. Certainly, this greatly depends on
the market demand and the established market capitalization. Alternatively
and maybe more beneficial is to reduce the design cycle and therefore its
associated costs altogether. In this section, by highlighting the traditional
embedded processors design, we discuss “large scale” programmability
which has been used to address the issues of lengthy design cycles and



8 S.Wong, S. Vassiliadis, and S. Cotofana

the associated development costs. One could argue that programmability
has always been part of embedded processors. However, programmability
introduced in this section significantly differs from the limited (low-level)
programmability of traditional embedded processors.

The heterogeneity of the embedded systems demanded a multitude of
embedded processors to be designed for a single system. This was further
strengthened by the fact that the semiconductor technology at the time did
not allow large chips to be manufactured. Subsequently, the design of em-
bedded processors requires lengthy design cycles and especially lengthy
verification cycles for the chips and their interfaces. On the other hand, one
can argue that an advantage is that subsequent system design cycles could
significantly be reduced in only one or few embedded processor(s) needed
to be redesigned. This delicate balance betweeniltigl design cycles
and possibly shorteneslibsequent design cycless disturbed when ad-
vances in semiconductor technology allowed increasingly more gates to be
put on a single chip. As a result, more functionality migrated from a mul-
titude of embedded processors into a single one. The resulting design of
such more complex and larger embedded processors did not have a large
effect on the initial design cycles. However, the length of subsequent re-
design cycles increased since the utilization of optimized circuits means
that subsequent designs are not necessarily easier than the initial ones.

In the search for design flexibility in order to decrease design cycles and
reduce subsequent design costs, functions were separated into time-critical
functions and non-time-critical ones. One could say that the embedded
processors design paradigm has shifted from one that is based on the func-
tional requirements to one that is based on the temporal requirements. The
collection of non-time-critical functions could then be performed by a sin-
gle chip (possibly implemented in a slower technology in order to reduce
cost). The remaining time-critical functions are to be implemented in high-
speed circuits achieving maximum performance. The main benefit of this
approach is that the larger and (possibly) slower chip can be reused in
subsequent designs resulting in shorter subsequent design cycles. While
this design paradigm was born out of market needs, i.e., to reduce design
cycles and development costs, it is well-known in the design of general-
purpose processors. In the general-purpose processor design paradigm, the



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 9

processor design can be divided into three distinct fields [5]: architécture
implementation, and realization.

In Section Il, we stated that more traditional embedded processors are
application-specific and static in nature. However, in this section we also
stated that increasingly more functionality is embedded into a single em-
bedded processor. Is such a processor still application-specific and can we
still call such a processor an embedded processor? The answer to this ques-
tion is affirmative since such a processor is still embedded if the other con-
straints (mass-produced, providing a dedicated service, etc.) are observed.
Given that increasing functionality usually implies more exposure of the
processor to the programmer, embedded processor have become indeed
less static as they can now be reused for other applications areas due to
their programmability. In the light of this all, two scenarios in the design
of programmable embedded processors can be distinguished:

» Adapt an existing general-purpose architectureand implement
it. This scenario reduces development costs albeit such architec-
tures must usually be licensed. Furthermore, since such architec-
tures were not adapted to embedded processors still some devel-
opment time is needed to modify such architectures.

» Build a new embedded processor architecturérom scratch. In
this scenario, the embedded processor development takes longer,
but the final architecture is more tuned towards the targeted ap-
plication(s) and thus possibly achieving better performance than
already existing general-purpose architectures. Actually, the goal
is to develop an architecture for a collection of similar applica-
tions (called application domain) such that processors can be pro-
duced once and reused when placed in different environments.
This reduces the overall system cost since the development costs
are amortized over a higher number of embedded processors.

Several examples of the first scenario can be found. A well-known ex-
ample is the MIPS architecture [13] which has been adapted resulting in
several embedded processor families. In this case, the architecture has been

1The architecture of any computer system is defined to be the conceptual structure and
functional behavior as seen by its immediate user.



10 S.Wong, S. Vassiliadis, and S. Cotofana

increasingly more adapted towards embedded processors by MIPS Tech-
nologies, Inc. which develops the architecture independently from other
embedded systems vendors. Another well-known example is the ARM ar-
chitecture [21] found in many current embedded processors. It is a RISC
architecture that was intended for low-power PCs (1987) at first, but it has
been quickly adapted to become an embeddable RISC core (1991). Since
then the architecture has been modified and extended several times in order
to optimize it for its intended applications. The most well-known version

is the StrongARM core which was jointly developed by Digital Semicon-
ductor and ARM. This core was intended to provide great performance
at extreme low-power. The most recent and extended implementation of
this architecture is developed by Intel called the Intel PCA Application
Processor [14]. Other examples of general-purpose architectures that have
been adapted include: IBM PowerPC [16], Sun UltraSPARC [25], the Mo-
torola 68k/Coldfire [18]. An example of the second scenatrio is the Trime-
dia VLIW architecture [22] from Trimedia Technologies, Inc. which was
originally developed by Philips Electronics, N.V. Its application domain

is multimedia processing and processors based on this architecture can be
found in television sets, digital receivers, and other digital video editing
boards. It contains a VLIW processor core that performs non-time-critical
functions and also controls the specialized hardware units that are intended
for specific real-time multimedia processing.

Summarizing, the characteristics mentioned in Section Il can be eas-
ily reflected in the three design stages: architecture, implementation, and
realization. The characteristic of embedded processors being application-
specific processors is exhibited by the fact that the architecture only con-
tains those instructions that are really needed to support the application
domain. The static structure characteristic exhibits itself by having a fixed
architecture, a fixed implementation, and a fixed realization. The hetero-
geneity characteristic exhibits itself by the utilization of a programmable
processor core with other specialized hardware units. Such specialized
hardware units can possibly be implemented on the same chip as the pro-
grammable processor core. Extending this principle further, the hetero-
geneity of the embedded processor also exhibits itself in the utilization of
different functional units in the programmable processor core. The mass-
produced characteristic is exhibiting itself in the realization process by



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 11

only utilizing proven technology that therefore should be available, cheap
and reliable. The requirement of real-time processing exhibits itself by re-
quiring architectural support for frequently used operations, extensively
parallel and/or pipelined (if possible) implementations, and realizations
incorporating adequately high-speed components.

IV. Early Time Reconfigurability

In the mid-nineties, we witnessed a second trend in the embedded pro-
cessors design next to programmability that was likewise reshaping the
design methodology of embedded processors and consequently redefined
some of their characteristics. Traditionally, the utilization of application-
specific integrated circuits (ASICs) was commonplace in the design of em-
bedded processors resulting in lengthy design cycles. Such an approach
requires several roll-outs of the embedded processor chips in question in
order to test/verify all the functional, temporal, and dependability require-
ments. Therefore, design cycles of 18 months or longer were commonplace
rather than exceptions. A careful step towards reducing such lengthy de-
sign cycles is to utilize reconfigurable hardware, also referred to as fast
prototyping. The utilization of reconfigurable hardware allows embedded
processor designs to be mapped early on in the design cycle to reconfig-
urable hardware, in particular field-programmable gate arrays (FPGAS),
giving rise to three advantages. First, the mentioned mapping requires con-
siderably less time than a chip roll-out and thereby shortening the devel-
opment time. Second, the embedded processor functionality can be tested
in an earlier stage and at the same allowing more design alternatives to be
explored. Third, the number of (expensive) chip roll-outs is also reduced
and thereby further reducing the development costs. However, the recon-
figurable hardware was initially limited in size and speed. The limited size
meant that only partial designs could be tested. Consequently, roll-out(s)
of the complete embedded processor design (implemented in ASICs) were
still required in order to verify the overall functionality and performance.

In recent years, the reconfigurable hardware technology has progressed
in a fast pace arriving at the point where embedded processor designs re-
quiring million(s) of gates can be implemented on such structures. More-



12 S.Wong, S. Vassiliadis, and S. Cotofana

over, the existing performance gap between FPGAs and ASICs is rapidly
decreasing. Due to these technological developments, the role of reconfig-
urable hardware in embedded processors design has changed considerably.
In the following paragraphs, we revisit the traditional embedded processor
characteristics mentioned in Section Il and investigate whether they still
hold in the case of FPGA-based embedded processors.

application-specific Embedded processors built utilizing reconfigurable
hardware are still application-specific in the sense that the implementa-
tions are still targeting such applications. Utilizing such implementations
for other purposes will prove to be very difficult or even impossible, be-
cause the required performance levels most certainly can not be achieved.

static structure From a pure technical perspective, the structure of
a reconfigurable embedded processor is not static since its functionality
can be changed during its lifetime. However, in most cases the design im-
plemented in reconfigurable hardware remains fixed between maintenance
intervals. Therefore, from the users perspective the structure of the embed-
ded processor is still static. In the next section, we explore the possibility
that the functionality of an embedded processor needs to be changed even
during run-time. In this case, the static structure can be perceived from
a higher perspective, namely the reconfigurable hardware is designed to
support only a fixed (or you may call static) set of implementations.

heterogeneous This characteristics is still very much present in the
case of reconfigurable embedded processors. We have added an additional
technology into the mix in which embedded processors can be realized.
For example, the latest FPGA offering from both Altera Inc. (Stratix [2])
and Xilinx Inc. (Virtex Il [29]) integrates on a single chip the following:
memory, logic, 1/0O controllers, and DSP blocks.

mass-produced This characteristic is still applicable to current recon-
figurable embedded processors. Early on, reconfigurable hardware was ex-
pensive resulting in its sole utilization for fast prototyping purposes. As the
technology progressed, reconfigurable hardware became cheaper and this
opened the possibility of actually shipping reconfigurable embedded pro-
cessors in final products. An important enabling trend next to reduced cost
that must not be overseen is that reconfigurable hardware has also become
more reliable both in production and during operation.

real-time Inthe beginning, we were witnessing the incorporation of re-



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 13

configurable hardware only for non-'time-critical’ functions. As the tech-
nology of reconfigurable continue to progress and making reconfigurable
hardware much faster, we are also witnessing their incorporation in ac-
tual products where real-time performance is required, such as multimedia
decoders.

V. Future Embedded Processors

In Sections Il and IV, we have argued that both programmability and
reconfigurability have been introduced into the embedded processor design
trajectory born out of the need to reduce design cycles and reduce develop-
ment costs. In short, programmability allows the utilization of high-level
programming languages (like C) making it easier to support applications
on embedded processors. Reconfigurability allows designs to be tested
early on in terms of functionality and diminishes the need for expensive
chip roll-outs. Merging both strategies is a logical and evolutionary step in
embedded processor design and has enormous potential, especially when
considering that the performance of FPGAs is nearing that of ASICs. More
precisely, we believe that the merging encompasses the augmentation of a
programmable processor (core) with reconfigurable hardware, possibly re-
placing fixed (ASICs) hardware. We foresee that such an augmentation
will provide several advantages:

« improved performance compared to a software-only implemen-
tation, because (tuned) specialized hardware implemented on the
FPGA can exploit the parallelism of the supported function and
allow the utilization of other performance-increasing techniques.

» rapid application developmentsince the mentioned augmenta-
tion introduces the possible utilization of high-level programming
and hardware description languages in the design trajectory.

» design flexibility is achieved by allowing design space explo-
ration in both hardware and software due to the possible utilization
of high-level programming and hardware description languages.

The mentioned advantages and enabling FPGA technologies have even
resulted in that programmable processor cores are under consideration
to be implemented in the same FPGA structures, e.g., Nios from Altera



14 S.Wong, S. Vassiliadis, and S. Cotofana

[1] and MicroBlaze from Xilinx [30]. However, the utilization of pro-
grammable embedded processors that are augmented with reconfigurable
hardware also poses several issues that must be addressed:

» Long reconfiguration latencies:In run-time reconfiguration, such
latencies may greatly penalize the performance, because any com-
putation must be halted until the reconfiguration has finished.

» Limited opcode spaceThe initiation and control of the reconfig-
uration and execution of various implementations on the reconfig-
urable hardware require the introduction of new instructions. This
puts much strain on the opcode space.

« Complicated decoder hardware:The multitude of new instruc-
tions greatly increases the complexity of the decoder hardware.

In the following, we discuss one possible approach [24] (introduced by
us) in merging programmability with reconfigurability in the design of em-
bedded processors. The approach utilizes microcode to alleviate the men-
tioned problems. Microcode consists of a sequence of (simple) microin-
structions that, when executed in a certain order, performs “complex” op-
erations. This approach allows “complex” operations to be performed on
much simpler hardware. In this section, we consider the reconfiguration
(either off-line or run-time) and execution processes as complex opera-
tions. The main benefits of our approach can be summarized as follows:

« Reduced reconfiguration latenciesMicrocode used to control
the reconfiguration process allows itself to be cached on-chip.
This results in faster access times to the reconfiguration microcode
and thus in turn reduces the reconfiguration latencies.

» Reduced opcode space requirement8y only pointing to mi-
crocode (explained later), we only require (at most) three new in-
structions to support any current and future operations.

» Reduced decoder complexityBy introducing only a few instruc-
tions, no complex instruction decoding hardware is required.

In Section A, we revisit microcode from its beginnings to its current
implementation within a high-level microprogrammed machine. In Sec-
tion B, we discuss in-depth our proposed MOLEN embedded processor.
Finally, in Section C, we briefly highlight several other approaches in this



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 15

field that are comparable in one way or another.

A. Revisiting Microcode

Microcode, introduced in 1951 by Wilkes [26], constitutes one of the
key computer engineering innovations. Microcode de facto partitioned com-
puter engineering into two distinct conceptual layers, namely: architecture
and implementation. This is in part because emulation allowed the defi-
nition of complex instructions which might have been technologically not
implementable (at the time they were defined), thus projecting an archi-
tecture to the future. That is, it allowed computer architects to determine
a technology-independent functional behavior (e.g., instruction set) and
conceptual structures providing the following possibilities:

» Define the computer’s architecture as a programmer’s interface to
the hardware rather than to a specific technology dependent real-
ization of a specific behavior.

« Allow a single architecture to be determined for a “family” of im-
plementations giving rise to the concept of compatibility. Simply
stated, it allowed programs to be written for a specific architecture
once and run at “infinitum” independent of the implementations.

DECODING MATRIX A MATRIX B
TREE - ____________  ___ T T .
; i

TIMING

PULSE

TO GATES IN
ARITHMETICAL

UNIT, ETC.
DELAY

FROM SIGN | FLIP-FLOP
OF ACCUMULATOR

Figure 2. Wilkes’ microprogram control model [26].



16 S.Wong, S. Vassiliadis, and S. Cotofana

Since its beginnings, as introduced by Wilkes, microcode has been a
sequence of micro-operations (microprogram). Such a microprogram con-
sists of pulses for operating the gates associated with the arithmetical and
control registers. Figure 2 depicts the method of generating this sequence
of pulses. First, a timing pulse initiating a micro-operation enters the de-
coding tree and depending on the setup register R, an output is generated.
This output signal passes to matrix A which in turn generates pulses to
control arithmetical and control registers, thus performing the required
micro-operation. The output signal also passes to matrix B, which in its
turn generates pulses to control the setup register R (with a certain delay).
The next timing pulse will therefore generate the next micro-operation in
the required sequence due to the changed register R.

MAIN M
A
MEMORY R

SEQUENCER

:
| HARDWIRED UNITS +

””” CONTROL LOGIC
CONTROL .
STORE

Figure 3. A high-level microprogrammed machine.

Over the years, the Wilkes’ model has evolved into a high-level micro-
programmed machine as depicted in Figure 3. In this figure, the memory
address register (MAR) is used to store the memory address in the main
memory from which data must be loaded of to which data is stored. The
memory data register (MDR) stores the data that is communicated to or
from the main memory. Furthermore, the control store contains microin-
structions (representing one or more micro-operations) and the sequencer
determines the next microinstruction to execute. The control store and the
sequencer correspond to Wilkes’ matrices A and B respectively. The ma-
chine’s operation is as follows:



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 17

1. The control store address register (CSAR) contains the address of
the next microinstruction located in the control store. The microin-
struction located at this address is then forwarded to the microin-
struction register (MIR).

2. The microinstruction register (MIR) decodes the microinstruction
and generates smaller micro-operation(s) accordingly that need to
be performed by the hardware unit(s) and/or control logic.

3. The sequencer utilizes status information from the control logic
and/or results from the hardware unit(s) to determine the next mi-
croinstruction and stores its control store address in the CSAR. It
is also possible that the previous microinstruction influences the se-
guencer’s decision regarding which microinstruction to select next.

It should be noted that in microcoded engines not all instructions ac-
cess the control store. As a matter of fact, only emulated instructions have
to go through the microcode logic. All other instructions will be executed
directly by the hardware (following path) in Figure 3). That is, a mi-
crocoded engine is as a matter of fact a hybrid of the implementation hav-
ing emulated instructions and hardwired instructions. We have to note that
contrary to some believes, from the moment it was possible to implement
instructions, microcoded engines always had a hardwired core that exe-
cuted RISC instructions.

B. Microcoded Reconfigurable MOLEN Embedded
Processor

In this section, only a brief description of the MOLEN embedded pro-
cessor is given. We refer to [24][28] for a more detailed description. In its
most general form, the proposed machine organization augmented with a
reconfigurable unit is depicted in Figure 4. In this organization, instruc-
tions are fetched from the main memory and are temporarily stored in the
‘Instruction Fetch’ unit. Subsequently, these instructions are fetched by the
‘Arbiter’ which decodes them before issuing them to their corresponding
execution units. Instructions that have been implemented in fixed hardware
are issued to the ‘Core Processing Units’, i.e., the regular functional units
such as ALUs, multipliers, and dividers. Instructions that have been imple-



18 S.Wong, S. Vassiliadis, and S. Cotofana

mented in reconfigurable hardware are issued to the ‘Reconfigurable Unit'.
Similar to other load/store architectures, the proposed machine organiza-
tion executes on data that is stored in the register file and prohibits direct
memory data accesses by hardware units other than the load/store unit(s).
However, there is one exception to this rule, the custom configured unit
(CCU), which embodies the actual reconfigurable hardware (e.g., FPGA),
is also allowed direct memory data access via the ‘Data Fetch/Store’ unit
(represented by a dashed two-ended arrow). This enables the CCU to per-
form much better when streaming data accesses are required, e.g., in multi-
media processing. Finally, we introduced the exchange registers (XREGS)
which are utilized to accommodate a more extensive argument passing
mechanism (compared to registers which are restricted in number and size)
between the complex implementations configured on the CCU and the ap-
plication code which embeds such implementations.

Main Memory

1 |

Instruction Data
Fetch Fetch/Store

1

Arbiter [++—{ Register
File

XREGS

1 |

i
[ posslasspdessy
I
Core Processing | j| pu-code ]
Units | unit

|
| | RECONFIGURABLEUNIT | __ !

Figure 4. The MOLEN machine organization.

The reconfigurable unit consists of a custom configured unit (CCU),
which could be for example be implemented by a Field-Programmable
Gate Array (FPGA), and theu-code unit. An operation, which can be as
simple as an instruction or as complex as a piece of code, performed by
the reconfigurable unit is divided into two distinct process phassind
execute Thesetphase is responsible for configuring the CCU enabling it
to perform the required operation(s). Such a phase may be subdivided into



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 19

two sub-phases: partiakt(p-sef) and completset(c-sef). Thep-setsub-
phase is envisioned to cover common functions of an application or set of
applications. More specifically, in thiesetsub-phase the CCU partially
configured to perform these common functions. Whilegksetsub-phase

can be possibly performed during the loading of a program or even at chip
fabrication time, thes-setsub-phase is performed during program execu-
tion. In thec-setsub-phase, the remaining part of the CCU (not covered in
thep-setsub-phase) is configured to perform other less common functions
and thusompletinghe functionality of the CCU. The configuration of the
CCuU is performed by executing reconfiguration microcode (either loaded
from memory or resident) in theu-code unit. Reconfiguration microcode

is generated by translating a reconfiguration file into microcode. In the
case that partial reconfigurability is not possible or not convenientg-the
setsub-phase can perform the entire configuration. &kecutephase is
responsible for actually performing the operation(s) on the (now) config-
ured CCU by executing (possibly resident) execution microcode stored in
the pu-code unit.

p-set/ c-set/ execute

[lopc [reP] pCS-0/ot

opcode address
resident/pageable
(0/1)

Figure 5. Thep-set c-set andexecuteinstruction formats.

In relation to these three phases, we introduce three new instructions:
c-set p-set andexecute Their instruction format is given in Figure 5.
We must note that these instructions mm specifically specify an oper-
ation and then load the corresponding reconfiguration and execution mi-
crocode. Instead, theset, c-set andexecuteinstructions directly point to
the (memory) location where the reconfiguration or execution microcode is
stored. In this way, different operations are performed by loading different
reconfiguration and execution microcodes. That is, instead of specifying
new instructions for the operations (requiring instruction opcode space),
we simply point to (memory) addresses. The location of the microcode
is indicated by the resident/pageable-bit (R/P-bit) which implicitly deter-
mines the interpretation of the address field, i.e., as a memory address



20 S.Wong, S. Vassiliadis, and S. Cotofana

(R/P=1) or as @-CONTROL STORE addressCS-« (R/P=0) indicating a
location within theppi-code unit. This location contains the first instruction
of the microcode which must always be terminated bgatop microin-
struction.

R/P  o/pCS-a

a
H

Residence

Table
pCS-a

pCS-a , if ;‘)resenl
Determine next from CCU
micro-instruction ?
SEQUENCER i
[pCsaR)

pCS—a

SET
FIXED

PAGEABLE ;
— 1\1/1 | toCCU
EXECUTE R
FIXEDJ

PAGEABLE

P-CONTROL STORE

Figure 6. pu-code unit internal organization.

The pu-code unit: The pu-code unit can be implemented in configurable
hardware. Since this is only a performance issue and not a conceptual one,
it is not considered further in detail. In this presentation, for simplicity, we
assume that theu-code unit is hardwired. The internal organization of
the pu-code unit is given in Figure 6. In all phases, microcode is used to
perform either reconfiguration of the CCU or control the execution on the
CCU. Both types of microcode are conceptually the same and no distinc-
tion is made between them in the remainder of this section.pfieode

unit comprises two main parts: the SEQUENCER and#@ONTROL
STORE. The SEQUENCER mainly determines the microinstruction exe-
cution sequence and theCONTROL STORE is mainly used as a storage
facility for microcodes. The execution of microcodes starts with the SE-
QUENCER receiving an address from the ARBITER and interpreting it
according to the R/P-bit. When receiving a memory address, it must be



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 21

determined whether the microcode is already cached ipABONTROL
STORE or not. This is done by checking the RESIDENCE TABLE which
stores the most frequently used translations of memory addresses into
CONTROL STORE addresses and keeps track of the validity of these
translations. It can also store other information: least recently used (LRU)
and possibly additional information required for virtual addressing sup-
port. In the remainderm we assume that the system only allows for real ad-
dressing for simplicity of discussion. In the cases tha€& is received

or a valid translation into aCS is found, it is transferred to the 'de-
termine next microinstruction’-block. This block determines which (next)
microinstruction needs to be executed:

» When receiving address of first microinstruction: Depending on
the R/P-bit, the correctCS is selected, i.e., from instruction
field or from RESIDENCE TABLE.

» When already executing microcode: Depending on previous mi-
croinstruction(s) and/or results from the CCU, the next microin-
struction address is determined.

The resultingpCS+ is stored in the-control store address registedSAR)
before entering the-CONTROL STORE. Using theCS~, a microin-
struction is fetched from the-CONTROL STORE and then stored in the
microinstruction register (MIR) before it controls the CCU reconfiguration
or before it is executed by the CCU.

The p-CONTROL STORE comprises two sectiSnsamely asetsec-
tion and arexecutesection. Both sections are further divided intbxed
part andpageablepart. The fixed part stores the resident reconfiguration
and execution microcode of tisetandexecutephases, respectively. Resi-
dent microcode is commonly used by several invocations (including recon-
figurations) and it is stored in the fixed part so that the performance of the
setandexecutephases is possibly enhanced. Which microcode resides in
the fixed part of theg-CONTROL STORE is determined by performance
analysis of various applications and by taking into consideration various
software and hardware parameters. Other microcodes are stored in mem-
ory and the pageable part of theCONTROL STORE acts like a cache to

2Both sections can be identical, but are probably only differing in microinstruction word-
sizes.



22 S.Wong, S. Vassiliadis, and S. Cotofana

provide temporal storage. Cache mechanisms are incorporated into the de-
sign to ensure the proper substitution and access of the microcode present
in the p-CONTROL STORE.

C. Other reconfigurability approaches

In the previous section, we have introduced a machine organization
where the hardware reconfiguration and the execution on the reconfigured
hardware is done in firmware via themicrocode (an extension of the clas-
sical microcode to include reconfiguration and execution for resident and
non-resident microcode). The microcode engine is extended with mecha-
nisms that allow for permanent and pageable reconfiguration and execution
microcode to coexist. We also provide partial reconfiguration possibilities
for “off-line” configurations and prefetching of configurations. Regarding
related work we have considered more than 40 machine proposals. We re-
port here a number of them that somehow use some partial or total recon-
figuration prefetching. It should be noted that our scheme is rather differ-
ent in principle from all related work as we use microcode, pageable/fixed
local memory, hardware assists for pageable reconfiguration, partial recon-
figurations, etc.. As it will be clear from the short description of the related
work, we differentiated from them in one or more mechanisms.

TheProgrammable Reduced Instruction Set Computer (PRIS%} at-
taches a Programmable Functional Unit (PFU) to the register file of a pro-
cessor for application-specific instructions. Reconfiguration is performed
via exceptions. In an attempt to reduce the overhead connected with FPGA
reconfiguration, Hauck proposed a slight modification to the PRISC ar-
chitecture in [11]: an instruction is explicitly provided to the user that
behaves like a NOP if the required circuit is already configured on the
array, or is in the process of being configured. By inserting the configu-
ration instruction before it is actually required, a so-calbedfiguration
prefetchingorocedure is initiated. At this point the host processor is free to
perform other computations, overlapping the reconfiguration of the PFU
with other useful work. Th&®neChipintroduced by Wittig and Chow [27]
extends PRISC and allows PFU for implementing any combinational or
sequential circuits, subject to its size and speed. The system proposed by



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 23

Trimberger [23] consists of a host processor augmented with a REY,
programmable Instruction Set Accelerat@ISA), much like the PRISC
mentioned above. Concerning the management and control of the repro-
gramming procedure, Trimberger mentions that the RISA reconfiguration
is under control of a hardwired execution unit. However, it is not obvious

if an explicit SET instruction is available. THeeconfigurable Multime-

dia Array Coprocesso(REMARC) proposed by Miyamori and Olukotun
[17] augments the instruction set of a MIPS core. As the coprocessor does
not have a direct access to the main memory, the host processor has to
write the input data to the coprocessor data registers, initiate the execu-
tion, and finally read the results from the coprocessor data registers. An ex-
plicit reconfiguration instruction is provide@arp designed by Hauser and
Wawrzynek [12] is another example of a MIPS derived Custom Comput-
ing Machine (CCM). The FPGA-based coprocessor has a direct access to
the standard memory. The MIPS instruction set is augmented with several
non-standard instructions dedicated to loading a new configuration, initi-
ating the execution of the newly configured computing facilities, moving
data between the array and the processor’s own registers, saving/retriving
the array states, branching on conditions provided by the array, etc. The
coprocessor is aimed to run autonomously with the host processor. In the
OneChip-98ntroduced by Jacob and Chow [15], the computing resources
are loadean-demandvhen a miss is detectedlternatively, the resources
arepre-loadedby using compiler directives. Several comments regarding
these assertions are worth to be provided. If an on-demand loading strat-
egy is employed, then the user has no control on the reconfiguration pro-
cedure. In the pre-loading strategy, an explicit reconfiguration instruction
is provided to the user and the reconfiguration procedure is indeed un-
der the control of the user. PRISNPiocessor Reconfiguration Through
Instruction-Set Metamorpho$iene of the earliest proposed CCM [3][4],
was developed as a proof-of-concept system, in order to handle the loading
of FPGA configurations, the compiler inserts library function calls into the
program stream [4]. From this description, we can conclude that an explicit
reconfiguration procedure is available. Gilson [8] CCM architecture con-
sists of a host processor and two or more FPGA-basetputing devices

The host controls the reconfiguration of FPGAs by loading new configura-
tion data through a Host Interface into the FPGA Configuration Memory.



24 S.Wong, S. Vassiliadis, and S. Cotofana

The reconfiguration process can be performed such that when one comput-
ing device is being reconfigured and, therefore, is idle, the others continue
executing. The write into the configuration memory instruction can play
the role of an explicit reconfiguration instruction. Thereforprexloading
strategy is employed. Schmit [20] proposes a partial run-time reconfigura-
tion mechanism, calledipeline reconfiguratioror striping, by which the
FPGA is reconfigured at a granularity that corresponds to a pipeline stage
of the application being implemented. An application which has been bro-
ken up into pipeline stages can be mapped to a striped FPGA. The pipeline
stages are known adripes the stages of the application are callad

tual stripes and the hardware stages which the virtual stages are loaded
into are calledbhysical stripesThe PipeRench coprocessor developed by

a team with Carnegie Mellon University [6][9] is focused on implement-
ing linear (1-D) pipelines of arbitrary length. PipeRench is envisioned as
a coprocessor in a general-purpose computer, and has direct access to the
same memory space as the host processor. The virtual stripes of the appli-
cation are stored into an on-chip configuration memory. A single physical
stripe can be configured in one read cycle with data stored in such a mem-
ory. The configuration of a stripe takes place concurrently with execution
of the other stripes. ThReconfigurable Data Path ArchitectufePA) is

also a self-steering autonomous reconfigurable architecture. It consists of
a mesh of identical Data Path Units (DPU) [10]. The data-flow direction
through the mesh is only from west and/or north to east and/or south and is
also data-driven. A word entering rDPA contains a configuration bit which

is used to distinguish the configuration information from data. Therefore,
a word can specify either a SET or an EXECUTE instruction, the argu-
ments of the instructions being the configuration information or data to be
processed. A set of computing facilities can be configured on rDPA.

VI. Conclusions

In this positional paper, we described several characteristics of em-
bedded processors that were logically deduced from embedded systems
characteristics in general. Driven by market requirements, two strategies
were followed in order to reduce design cycles and development costs.



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 25

First, programmability was introduced as a means to combine all non-time-
critical functions to be performed by a ‘general-purpose’-like embedded
processor. Such an embedded processor could then be reused in subsequent
designs and thereby greatly reducing design cycles. Second, reconfigura-
bility was initially only utilized for fast prototyping. Over time, technolog-

ical advances in reconfigurable hardware in terms of size and performance
have led to the fact the reconfigurable embedded processors are actually
incorporated in shipped embedded systems. We believe that the future of
embedded processors design lies in the merging of both strategies. Pro-
grammability allows the utilization of high-level programming languages
(like C) and thereby easing application development. The utilization of re-
configurable hardware combines design flexibility and fast prototyping. At
the same time, the processing performance of reconfigurable hardware is
nearing that of application-specific integrated circuits. Finally, in this pa-
per we have highlighted one possible framework in which future embed-
ded processor design can be performed. The proposed MOLEN embedded
processor combines software programming (by utilizing a programmable
processor core) with hardware programming (utilizing microcode to con-
trol the reconfigurable hardware). Such an approach provides possibilities
in combatting several issues associated with reconfigurable hardware.

References

1. Altera Corporation. Nios Embedded Processor. http://www.altera.
com/products/devices/excalibur/exc-niaglex.html.

2. Altera Corporation. Stratix Family. http://www.altera.com/products/
devices/stratix/stx-index.jsp.

3. P.M. AthanasAn Adaptive Machine Architecture and Compiler for
Dynamic Processor Reconfiguratio®hD thesis, Brown University,
Providence, Rhode Island, May 1992.

4. P.M. Athanas and H.F. Silverman. Processor Reconfiguration
through Instruction-Set MetamorphosiEEE Computer26(3):11—
18, March 1993.

5. G.A. Blaauw and F.P. Brook€omputer Architecture: Concepts and
Evolution Addison-Wesley, 1997.



26

10.

11.

12.

13.

14.

15.

16.

S.Wong, S. Vassiliadis, and S. Cotofana

S. Cadambi, J. Weener, S.C. Goldstein, H. Schmit, and D.E. Thomas.
Managing Pipeline-Reconfigurable FPGAs6th International Sym-
posium on Field Programmable Gate Arraymges 55-64, Califor-
nia, USA, 1998.

W.-T. Chang, A. Kalavade, and E.A. Lee. Effective Heterogeneous
Design and Co-Simulation. In Giovanni de Michelli and Mariagio-
vanna Sami, editorgjardware/Software Co-Desigpages 187-211.
Kluwer Academic Publishers, 1995.

K.L. Gilson. Integrated Circuit Computing Device Comprising a Dy-
namically Configurable Gate Array Having a Microprocessor and
Reconfigurable Instruction Execution Means and Method Therefore.
U.S. Patent No. 5,361,373, November 1994,

S.C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor,
and R. Laufer. PipeRench: A Coprocessor for Streaming Multimedia
Acceleration. InThe 26th International Symposium on Computer Ar-
chitecture pages 28-39, Georgia, USA, May 1999.

R.W. Hartenstein, R. Kress, and H. Reinig. A New FPGA Archi-
tecture for Word-Oriented Datapaths.4th International Workshop

on Field-Programmable Logic: Architectures, Synthesis and Appli-
cations, Lecture Notes in Computer Science, pages 144-155, Czech
Republic, September 1994.

S.A. Hauck. Configuration Prefetch for Single Context Reconfig-
urable Coprocessors. I6th International Symp. on Field Pro-
grammable Gate Arraypages 65—74, California, 1998.

J.R. Hauser and J. Wawrzynek. Garp: A MIPS Processor with a
Reconfigurable Coprocessor. IBEEE Symp. on FPGAs for Custom
Computing Machinegpages 12-21, California, 1997.

K. Heinrich.MIPS RISC ArchitecturdPrentice Hall, 1992.

Intel  Corporation. Intel PCA Application Processors.
http://mww.intel.com/design/pca/applicationsprocessors/index.htm.
J.A. Jacob and P. Chow. Memory Interfacing and Instruction Spec-
ification for Reconfigurable Processors. AGM/SIGDA Seventh In-
ternational Symposium on Field Programmable Gate Arraaes
145-154, Monterey, California, 1999.

C. May, E. Silha, R. Simpson, and H. Warrdie PowerPC Archi-
tecture Morgan Kaufmann Publishers, Inc., 1994.



FUTURE DIRECTIONS OF EMBEDDED PROCESSORS 27

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

T. Miyamori and K. Olukotun. A Quantitative Analysis of Recon-
figurable Coprocessors for Multimedia Applications. In Kenneth L.
Pocek and Jeffrey M. Arnold, editorEEEE Symposium on FPGAs
for Custom Computing Machinggages 2—11, California, 1998.
Motorola. Motorola 68000/Coldfire Family. http://e-www.motorola.
com/webapp/sps/site/homepage.jsp?nodeld=03MOyIgrpxN.

R. RazdanPRISC: Programmable Reduced Instruction Set Comput-
ers. PhD thesis, Harvard University, Cambridge, MA, USA, 1994.

H. Schmit. Incremental Reconfiguration for Pipelined Applications.
In IEEE Symposium on FPGAs for Custom Computing Machines
pages 47-55, California, April 1997.

D. Seal. ARM Architecture Reference Manuahddison-Wesley,
2000.

S. Rathnam and G. Slavenburg. An Architectural Overview of
the Programmable Multimedia Processor, TM-1 Proceedings of
COMPCON '96 pages 319-326. IEEE, 1996.

S.M. Trimberger. Reprogrammable Instruction Set Accelerator. U.S.
Patent No. 5,737,631, April 1998.

S. Vassiliadis, S. Wong, and S. Cotofana. The MOLEINCoded
Processor. IfProc. of the 11th Intern. Conf. on Field-Programmable
Logic and Applications (FPL2001pages 275-285, 2001.

D.L. Weaver and T. Germond, editofiche SPARC Architecture Man-
ual (v9) Prentice Hall, 1994.

M. V. Wilkes. The Best Way to Design an Automatic Calculating Ma-
chine. InReport of the Manchester University Computer Inaugural
Conferencepages 16-18, July 1951.

R.D. Wittig and P. Chow. OneChip: An FPGA Processor with Recon-
figurable Logic. INEEE Symposium on FPGAs for Custom Comput-
ing Machinespages 126-135, 1996.

S. Wong. Microcoded Reconfigurable Embedded Processors. PhD
thesis, Delft University of Technology, Delft, The Netherlands, De-
cember 2002.

Xilinx Corporation. Virtex-Il 1.5V FPGA Family: Detailed Func-
tional Description. http://www.xilinx.com/partinfo/databook.htm.
Xilinx Corporation. Xilinx MicroBlaze. http://www.xilinx.com/xInx/
xil_prodcatproduct.jsp?title=microblaze.



