
1

Multimedia Rectangularly and Separably Addressable Memory

Georgi Kuzmanov Georgi Gaydadjiev Stamatis Vassiliadis

Computer Engineering Lab,

Electrical Engineering Dept., TU Delft, The Netherlands,

E-mail: {G.Kuzmanov, G.N.Gaydadjiev, S.Vassiliadis }@EWI.TUDelft.NL

Technical report CE-TR-2004-01

http://ce.et.tudelft.nl/publications.php

Abstract

In this report, we focus on the parallel access of randomly aligned rectangular blocks of visual data, common

for various multimedia applications. As an alternative of traditional linearly addressable memories, we suggest

a memory organization based on ana × b array of memory modules. A highly scalable data alignment scheme

incorporating module assignment functions and a new generic addressing function are proposed. The addressing

function implicitly embeds the module assignment functions and is separable, which potentially enables short critical

paths and saves hardware resources. We also discuss the interface between the proposed memory organization and a

linearly addressable memory accompanied with comprehensive examples. An implementation, suitable for MPEG-4

is presented and mapped onto an FPGA technology as a case study. Synthesis results indicate reasonably small

hardware costs for an exemplary512× 1024 2D addressable space and a range of access pattern dimensions. The

design is envisioned to be more cost-effective compared to related works. Regarding performance, our experiments

suggest that a speedup of 8x can be expected.



2

I. I NTRODUCTION

The problems of conflict-free parallel accesses of different data patterns out of a two-dimensional storage have

been extensively explored for long time in several research areas. Vector processors designers have been interested

in memory systems that are capable of delivering data at the demanding bandwidths of the increasing number of

pipelines, see for example [1], [6], [8], [12]. Different approaches have been proposed for optimal alignment of data

in multiple memory modules [1], [3], [8]–[10], [12]. Module assignment and addressing functions have been utilized

in various interleaved memory organizations to improve the performance. In graphical display systems, researchers

have been investigating efficient accesses of different data patterns: blocks (rectangles), horizontal and vertical

lines, forward and backward diagonals [10], [11]. While all these patterns are of interest in general purpose vector

machines and graphical display systems, rectangular blocks are the basic data structures in visual data compression.

The most computationally intensive algorithms, like motion estimation and the discrete cosine transform, operate on

square pixel blocks, requiring a huge data throughput. Therefore, the emerging visual data compression standards

have narrowed the problems towards block (rectangularly) accessible memories with emphasis on high-performance

implementations. Furthermore, to utilize the available bandwidth of a particular machine efficiently, new scalable

memory organizations, capable of accessing rectangular pixel patterns are needed.

In this report, we propose an addressing function for rectangularly addressable systems, with the following

characteristics:

• Rectangular sub-arrays out of a two-dimensional data storage can be accessed with high scalability. The

addressing is separable, which saves addressing hardware. We also introduce implicit module assignment

functions to further improve the designs. Finally, we propose a conflict free data routing circuitry avoiding

large critical path penalties.

• Reasonably small hardware costs are shown by an FPGA case study implementation. In our experiments, we

consider the maximum available on-chip memory of the Xilinx Virtex II Pro 2vp50ff1152 device, which is

sufficient to implement a512 × 1024-byte data storage. The proposed implementation requires from as little

as 534 slices for2 × 4-pixel patterns up to 3287 slices for8 × 8 ones, which is between 1% and 13% of

the today’s reconfigurable device resources considered. Speedups around 8x are estimated for the case study

FPGA implementations versus traditional linearly accessible memories.

The remainder of the report is organized as follows. Section II motivates the presented research and introduces

the particular addressing problem. In Section III, the addressing scheme is described and the corresponding memory

organization with a possible implementation are discussed. Case study synthesis results for FPGA technology are

reported and related work is compared to our design in Section IV. Finally, the report is concluded with Section

V.



3

II. M OTIVATION

In this section, we consider the memory addressing and accessing problem by considering the MPEG standards.

The problems described here, as well as the solutions described later are, however, of a general nature regarding

vector rectangular data accessing.

The addressing problem - a motivating example.Most of data processing in MPEG standards is not performed

over separate pixels, but over certain regions (blocks of pixels) from a frame. This generates problems with data

alignment and access in system memory. To illustrate these problems, let us consider the followingmotivating

example. Assume a single port Linearly Addressable Memory (LAM) and a pixel plane divided into blocks with

dimensions 4x2, with each pixel represented by a byte. Further, assume that the video information is stored as a

scan-line (see Figure 1(a)) and that the system is capable of accessing 8 bytes per cycle. Obviously, neither of the

blocks containing pixels{8, 9, 10, 11, 24, 25, 26, 27} and{26, 27, 28, 29, 42, 43, 44, 45} is accessible by a single

memory transfer. This is because these blocks are not aligned into consecutive memory locations (see Figure 1(b)).

Even though the memory system could be accessing all data, because it can access linearly 8 bytes in a single

memory cycle, in fact it can access, for example, either bytes{26, 27, 28, 29} or bytes{42, 43, 44, 45}, but not all

8 {26, 27, 28, 29, 42, 43, 44, 45}. Consequently, even though an 8-byte memory bandwidth is available, redundant

data fetches can not be avoided.

Another approach to process block-organized data may be to reorder data into the LAM. If we position blocks

into consecutive bytes (Figure 1(c)), we will be able to access such blocks in a single memory cycle (e.g., pixels{8,

9, 10, 11, 24, 25, 26, 27}). In MPEG, however, some of the most demanding algorithms (e.g., motion estimation)

require accessing block data at an arbitrary position in the frame, thus in memory. In the Figure 1(c) example,

accessing block{26, 27, 28, 29, 42, 43, 44, 45} requires 4 cycles, even though the bandwidth is 8 bytes. This is

because only two of its bytes can be accessed in one memory access cycle (i.e., either{26, 27}, or {28, 29}, or

{42, 43}, or {44, 45}). Figure 1(c) suggests that in such cases data fetching may become even less effective than

the scan-line alignment scheme.

In the rest of the presentation, for conciseness, we will refer to blocks like{8, 9, 10, 11, 24, 25, 26, 27} in

Figure 1(a) as aligned, and to the remaining blocks (like{26, 27, 28, 29, 42, 43, 44, 45}) as non-aligned. The

borders between aligned blocks in the Figure are marked with thick line crosses.

Formal problem introduction and proposed solution. Let us assume a LAM with word length ofw bits (w =

8, 16, 32, 64, 128) and the time for linear memory access to beTLAM . The time to access a singlea× b sub-array

of 8-bit pixels, depending on its alignment in the LAM will be:

Aligned sub-array:8·a·bw · TLAM ;

Not aligned sub-array:(8·a
w + 1) · b · TLAM .

The time, required to accessN a× b blocks will be:



4

0
 1
 2
 3


16
 17
 18
 19


4
 5
 6
 7


20
 21
 22
 23


8
 9
 10
 11


24
 25
 26
 27


12
 13
 14
 15


28
 29
 30
 31


32
 33
 34
 35


48
 49
 50
 51


36
 37
 38
 39


52
 53
 54
 55


40
 41
 42
 43


56
 57
 58
 59


44
 45
 46
 47


60
 61
 62
 63


64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79


scan-line length


80
 81

block to access
aligned block
 border between aligned blocks


(a) Pixels in a Video Frame;

scan-line length


2 ... 23
 24
 25
 26
 27
 28
 29
 40
30...39
 41
 42
 43
 44
 45
 46
 47
 48 ...


block to access


0
 1


(b) Scan-Line Alignment;

0
 1
 ..... 23
 8
 9
 10
 11
 24
 25
 26
 12...15
 28
 29


block to access


27


block 2


30...41
 42
 43
 44
 45
56...59
 46...


block 3
 block 6
 block 7
block 0


(c) Block-based Alignment.

Fig. 1. Addressing problem in LAM.

TABLE I

NUMBER OF LAM CYCLES IN DIFFERENT CASES

neither aligned mixed all aligned

( 8·n2

w
+ n) ·N ( 8·n2

w
+ n− 1) ·N 8·n2

w
·N

All N blocks aligned:N · 8·a·b
w · TLAM ;

Neither of the blocks aligned:N · (8·a
w + 1) · b · TLAM ;

Mixed: N · [ 1a · 8·a
w + a−1

a (8·a
w + 1)] · b · TLAM =

= N · (8 · a
w

+ 1− 1
a
) · b · TLAM (1)

By mixedaccess scenario we mean accessing both aligned and non-aligned blocks. In (1), we assume that the

probability to access an aligned block is1a , while for a non-aligned block it isa−1
a . For simplicity, but without

losing generality, assume square blocks ofn × n, (i.e., a=b=n). Further assuming N blocks to access, we can

estimate the number of LAM cycles as indicated in Table I. Obviously, the number of cycles to access ann × n



5

LAM


2DAM
 Block

Processing


Unit(s)


W
 a x b


T
LAM
 T
2DA


Fig. 2. Memory hierarchy with 2DAM.

TABLE II

ACCESS TIME PERn× n BLOCK IN LAM CYCLES. t = T2DA
TLAM

.

n w LAM 2DAM

WC Mix. BC Mix./BC WC

8 72 71 64 8+t 64+t

8 16 40 39 32 4+t 32+t

32 24 23 16 2+t 16+t

8 272 271 256 32+t 256+t

16 16 144 143 128 16+t 128+t

32 80 79 64 8+t 64+t

block in a LAM is a square function ofn, i.e., O(n2).

An appropriate memory organization may speed-up the data accesses. Consider the memory hierarchy in Figure

2 with time to access an entiren×n block from the 2D Accessible Memory (2DAM) to beT2DA. In such a case,

the time to accessN n× n sub-blocks in the mixed access scenario will be:

N
n · 8·n2

w · TLAM + N · T2DA, [sec] ⇔
(8·n

w + T2DA

TLAM
) ·N , [LAM cycles].

That is the sum of the time to access the appropriate number of aligned blocks (N
n ) from LAM plus the time to

access allN blocks from the 2DAM. It is evident that in a mixed access scenario, the number of cycles to access an

n× n block in the hierarchy from Figure 2 is a linear function ofn, i.e., O(n) and depends on the implementation

of the 2D memory array. Table II presents access times per singlen × n block. Time is reported in LAM cycles

for some typical values ofn and w. Three cases are assumed for LAM: 1.) neither of theN blocks is aligned

- worst case (WC); 2.) mixed block alignment (Mix.); and 3.) all blocks are aligned - best case (BC). The last



6

two columns contain cycle estimations for the organization from Figure 2. In this case, both mixed and best case

scenarios assume that aligned blocks are loaded from the LAM to the 2DAM first and then non-aligned blocks

are accessed from the 2DAM. The 2DAM worst case (contrary to LAM) assumes that all blocks to be accessed

are aligned. Even in this worst case, the 2DAM-enabled hierarchy may be better than LAM best case if the same

aligned block should be accessed more than once. For example, assume accessingk times the same aligned block.

In LAM, this would takek · 8·n2

w = [8·n
2

w + (k− 1) · 8·n2

w ], while with 2DAM, it would cost[8·n
2

w + (k− 1) · T2DA

TLAM
]

LAM cycles per block. Obviously, to have a 2DAM enabled memory hierarchy, faster than pure LAM, it would

be enough if8·n
2

w > T2DA

TLAM
. All estimations above strongly suggest thata 2DAM with certain organization may

dramatically reduce the number of accesses to the (main) LAM, thus considerably speeding-up related applications.

III. B LOCK ADDRESSABLEMEMORY

In this Section, we present the proposed mechanism by describing its addressing scheme, the corresponding

memory organization and a potential implementation.

Addressing Scheme.AssumeM×N image data stored ink = a×b memory modules (1 ≤ a ≤ M ; 1 ≤ b ≤ N ).

Furthermore, assume that each module is linearly addressable. We are interested in parallel, conflict-free access of

a× b blocks at any (i,j) location, defined as:

B(i, j) = {I(i + p, j + q)|0 ≤ p < a, 0 ≤ q < b},
0 ≤ i ≤ M − a, 0 ≤ j ≤ N − b.

To align data ink modules without data replication, we organize these modules in a two-dimensionala × b

matrix. A module assignment function, which maps a piece of data with 2D coordinates(i,j) in memory module

(p, q) : 0 ≤ p < a, 0 ≤ q < b, is required. We separate the function denoted asmp,q(i, j), into two mutually

orthogonal assignment functionsmp(i) andmq(j). We define the following module assignment functions for each

module at position(p,q):

mp(i) = (i− p) mod a (2)

mq(j) = (j − q) mod b (3)

The addressing function for module(p,q) with respect to coordinates(i,j) is defined as:

Ap,q(i, j) = (i div a + ci) · N

b
+ j div b + cj (4)

ci =





1, i mod a > p

0, otherwise.
cj =





1, j mod b > q

0, otherwise.

Obviously, if p = a − 1 ⇒ ci = 0 for ∀i; if q = b − 1 ⇒ cj = 0 for ∀j, respectively. In essence,ci and cj

are the module assignment functions, implicitly embedded into the linear addressAp,q(i, j).



7

0
 1
 2
 3


16
 17
 18
 19


4
 5
 6
 7


20
 21
 22
 23


8
 9
 10
 11


24
 25
 26
 27


12
 13
 14
 15


28
 29
 30
 31


32
 33
 34
 35


48
 49
 50
 51


36
 37
 38
 39


52
 53
 54
 55


40
 41
 42
 43


56
 57
 58
 59


44
 45
 46
 47


60
 61
 62
 63


64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79


scan-line length


80
 81

block to access
aligned block


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,3
1,2


0,4
 0,5
 0,6
 0,7


1,4
 1,5
 1,7
1,6


0,8
 0,9


1,8
 1,9


2,0
 2,1
 2,2
 2,3


3,0
 3,1
 3,2
 3,3


2,4
 2,5
 2,6
 2,7


3,4
 3,5
 3,6
 3,7


2,8
 2,9


3,8
 3,9


4,0
 4,1
 4,2
 4,3
 4,4
 4,5
 4,6
 4,7
 4,8
 4,9


j


i


b=4


a=2


0,10
 0,11
 0,12
 0,13
 0,14
 0,15


1,11
1,10
 1,12
 1,13
 1,15
1,14


2,10
 2,11
 2,12
 2,13
 2,14
 2,15


3,10
 3,11
 3,12
 3,13
 3,14
 3,15


4,10
 4,11
 4,12
 4,13
 4,14
 4,15


N = 16


Fig. 3. Mapping of 2D organized pixels into a scan line sequence (considered example)

Example. Consider the motivating example of Section II and the pixel area from Figure 1(a). The same pixel

area is mapped into a 2D addressing space with N=16 as depicted in Figure 3. In this new mapping, we address data

by columns and rows, as 2D addressing is the actual addressing performed at algorithmic level. That is, byte 27 is

referred to as(1,11). Consequently, we have to perform the physical memory partitioning and assignment of data.

Assume that data will be stored into linearly byte addressable memory modules, organized in a2×4 matrix. Because

in our example we have5× 16 = 80-byte memory, we subdivide the physical memory into 8 modules in total, 10

bytes each. Each pixel has to be allocated in a specific module by the assignment function. The memory module

assignments of all pixels from the considered pixel area for a=2, b=4 are depicted in Figure 4(a). In the Figure, the

pixel with 2D address(1,11) from Figure 3 is allocated by the module assignment function in module(1,3). At the

second addressing level, the linear address of each individual pixel within the module (intra-module address), has

to be determined. The addressing function (4) generates a unique intra-module address within an uniquely assigned

memory module, for each and every byte from the 2D addressing space. The intra-module address of pixel(1,11)

determined by (4) is 2, denoted as A2 in Figure 4(b). Consequently, the proposed addressing scheme is in fact

performed at two levels- module assignment and intra-module addressing.



8

As it has been stated, our scheme addresses and simultaneously accesses entire blocks rather than individual

bytes. In the presented example, blocks are of dimension2 × 4 bytes. By our definition, blocks are addressed by

the 2D coordinates of their upper-left pixels. Consider the shaded non-aligned block{26-45} from the motivating

example. This block will be addressed asB(1,10), see Figure 3. Note that the pixels of a block are accessed from

all 8 modules simultaneously, in parallel. Using (2)-(4), we can calculate the linear address of the pixels from the

considered block for each module(p,q) with respect to 2D addressi,j=(1,10):

• module (p,q)=(0,0)

i mod a = 1 > p ⇒ ci = 1

j mod b = 2 > q ⇒ cj = 1



 ⇒ A0,0(1, 10) = 7

• module (p,q)=(1,3)

i mod a = 1 = p ⇒ ci = 0

j mod b = 2 = q ⇒ cj = 0



 ⇒ A1,3(1, 10) = 2

That is, the pixels of blocki,j=(1,10) will be allocated at address 7 in module(p,q)=(0,0) and at address 2 in

module(p,q)=(1,3). Identically, the intra-module addresses of the remaining 6 pixels of the considered block can

be calculated for each of the remaining 6 modules to beA0,1(1, 10) = 7, A0,2(1, 10) = 6, A0,3(1, 10) = 6,

A1,0(1, 10) = 3, A1,1(1, 10) = 3, A1,2(1, 10) = 2. Figure 4(b) illustrates the internal linear addressing and data

alignment within the considered two memory modules. Note that having the intra-module addresses of all pixels

in the considered block, we only need to know which module contains the upper-left pixel(i,j)=(1,10) to reorder

the data properly. The upper-left pixel of blockB(1,10) is calculated (from the zeroes of (2) and (3)) to be located

in module (p,q)=(1,2). Thus, having each and every of the 8 block pixels localized in each and every of the 8

modules, we can access the entire block in one cycle by accessing all the modules in parallel.Yet identically, it can

be shown that any2× 4 block, regardless its position (thus including aligned blocks), can be accessed in a single

cycle. Recall that blockB(1,10) is the 2D notation of block{26-45} from the motivating example. This block was

accessible in 2 or 4 cycles from a conventional 8-byte LAM, thus 2 to 4 times slower than the proposed scheme

at the same bandwidth of 8 bytes per cycle.

Memory Organization and Implementation. The key purpose of the proposed addressing scheme is to en-

able performance-effective memory implementations optimized for algorithms requiring the access of rectangular

blocks. Designs with shortest critical paths are to be considered with the highest priority, as they dictate machine

performance. Equations (2)-(4) are generally valid for any natural value of parametersa, b and N. To implement

the proposed addressing and module assignment functions, however, we will consider practical values of these

parameters. Since pixel blocks processed in MPEG algorithms have dimensions up to16× 16, values of practical

significance for parametersa and b are the powers of two up to 16 (i.e., 1, 2, 4, 8, 16). For the particular

implementation example we will consider the discussed block size -a× b = 2× 4.

Module addressing.An important property of the proposed module addressing function is itsseparability. It



9

0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3


1,0
 1,1
 1,2
 1,3


0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3
 0,0
 0,1
 0,2
 0,3


m
q
(j)


m
p
(i)


b=4


a=2


N = 16


(a) Module assignments of the 2D pixel area

0,0
 0,4
 0,8
 0,12
 2,0
 2,4
 2,8
 2,12
 4,0
 4,4
 4,8
 4,12


A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8
 A9
 A10
 A11


module
(1,3)


1,3
 1,7
 1,11
 1,15
 3,3
 3,7
 3,11
 3,15
 -
 -
 -
 -


N/b


A0
 A1
 A2
 A3
 A4
 A5
 A6
 A7
 A8
 A9
 A10
 A11


module
(0,0


(b) 2D addresses and linear addressing within modules

Fig. 4. Memory modules assignment and internal addressing fora=2, b=4, N=16.

means that the function can be represented as a sum of two functions of asingle and uniquevariable each (i.e.,

variables i and j). The separability ofAp,q(i, j) = Aip(i)+Ajq(j) allows the address generators to be implemented

per column and per row (see Figure 5) instead of implemented as individual addressing circuits for each of the

memory modules. Taking into account the separability ofAp,q(i, j) and considering an arbitrary range of picture

dimensions to be stored, we can defineCh = N = 2n, n ≥ 4 as ”horizontal capacity” of the 2DAM (to be discussed

later). The requirements for the frame sizes of all MPEG standards and for Video Object Planes (VOPs) [2] in MPEG-

4 are constituted to be multiples of 16, thus,N is a multiple of24 by definition. Assuming the discussed practical

values of N and b, further analysis of Equation (4) suggests thatj div b+ cj < N
b and(j div b+ cj)max = N

b − 1,

i.e., no carry can be ever generated betweenAip(i) andAjq(j). Therefore, we can implementAp,q(i, j) for every

module(p,q) by simply routing signals to the corresponding address generation blocks without actually summating

Aip(i) + Ajq(j). Figure 6(a) illustrates address generation circuitry of q-addresses (Ajq(j)) for all modules except

the first (1 ≤ q < b). With respect to (4), ifcj is 1 the quotientj div b should be incremented by one, otherwise

it should not be changed. To determine the value ofcj , a Look-Up-Table (LUT) withj mod b inputs can be used.

For the assumed practical values ofa andb (≤ 16), such a LUT would have at most 4 inputs, i.e.,cj is a binary

function of at most 4 binary digits. Row p-addresses are generated identically. Forp=1 or q=3, ci = 0, cj = 0



10

Aj
0
(j)


shuffle
 shuffle
 shuffle
 shuffle


shuffle


Module

(0,0)


Module

(0,1)


Module

(0,2)


Module

(0,3)


Module

(1,0)


Module

(1,1)


Module

(1,2)


Module

(1,3)


j


i


Aj
1
(j)
 Aj
2
(j)
 Aj
3
(j)


Ai
0
(i)


Ai
1
(i)


R
i
(i)


R
j
(j)


i


j


Fig. 5. 2DAM for a=2, b=4 andN = 2n ≥ 16

respectively. Therefore, address generation in these cases does not require a LUT and an incrementor. Instead, it is

just routing i div a and j div b to the corresponding memory ports, i.e., blocksAi1(i) andAj3(j) in Figure 5 are

empty. Figure 6(b) depicts all 4 LUTs for the casea× b = 2× 4. The usage of LUTs to determineci andcj is not

mandatory, fast pure logic can be utilized instead. However, we use LUTs for two main purposes: 1.) to illustrate

the design concept; and 2.) LUTs are envisioned to fit better in the FPGA implementation considered further in

this report.

Data routing circuitry. In Figure 5, the shuffle blocks, together with blocksRp(i) andRq(j), illustrate the data

routing circuitry. The shuffle blocks are in essence circular barrel shifters, i.e. having the complexity of a network

of multiplexors. Ann×n shuffle is actually ann → 1 n-way multiplexor. In the example from Figure 5, thei-level

shuffle blocks are four (2 → 1) 16-bit multiplexors and thej-level one is (4 → 1) 64-bit. To control the shuffle

blocks, we can use the module assignment functions forp = q = 0, i.e., Ri(i) = i mod a andRj(j) = j mod b.

These functions calculate the(p,q)-coordinates of the ”upper-left” pixel of the desired block, i.e., pixel(i,j) . For

the assumed practical values ofa and b being powers of two, the implementation ofRi(i) and Rj(j) is simple

routing of the least-significantlog2(a) -bits (resp.log2(b)) to the corresponding shuffle level.

2DAM capacity. Earlier, we have defined the ”horizontal capacity” of 2DAM asCh = N = 2n, n ≥ 4. Ch is the

maximal scanline length in bytes (pixels), the 2DAM can store without addressing conflicts. The ”vertical capacity”

of 2DAM is denoted asCv and defined as themaximal number ofCh-byte (Ch-pixel) scanlines the 2DAM can



11

j div b
 j mod b


j-address


LUTq
INC


log
2
(b)


Ajq(j)


c
j

log
2
(N
/b)


(a) Generation Circuit of q-addresses for1 ≤ q < b

j mod cj i mod ci

b q=0 q=1 q=2 a p=0

0 0 0 0 0 0 0

0 1 1 0 0 1 1

1 0 1 1 0 - -

1 1 1 1 1 - -

(b) LUTs contents fora=2, b=4

Fig. 6. Module address generation

store. Finally, the capacityC2DAM of a 2DM is defined as the couple (Ch × Cv)-bytes (pixels), rather than as a

single number of bytes.

LAM Interface. Figure 7 depicts the organization of the interface between LAM and 2DAM (recall Figure

2) for the modules considered in Figure 5. Data bus width of the LAM is denoted by W (in number of bytes).

In the particular example, W is assumed to be 2, therefore modules have coupled data busses. For each(i,j)

address, the AGEN block sequentially generates addresses to the LAM and distributes write enable (WE) signals

to a corresponding module couple. Two module WE signals (WEi,WEj) are assumed for easier row and column

selection. In the general case, the AGEN block should sequentially generatea·b
W LAM addresses for each(i,j)

address. Provided that pixel data is stored into LAM in scan-line manner, the set of LAM addresses to be generated

is defined as follows:

ALAM (i, j) = {a · (i div a) + k} ·N + b · (j div b) + l ·W

Which, assuming that only aligned blocks will be accessed from the LAM (i.e.,(i,j) are aligned), can be simplified:

ALAM (i, j) = (i + k) ·N + j + l ·W (5)



12

Module

(0,0)


Module

(0,1)


j


i


AGEN


Module

(0,2)


Module

(0,3)


Module

(1,0)


Module

(1,1)


Module

(1,2)


Module

(1,3)


LAM

memory


Data (W=2)


Address

(A
LAM
)


WE
j


WE
i


Fig. 7. LAM interface forW=2, a=2, b=4

k = 0, 1, ..., a− 1; l = 0, 1, ..., b
W − 1.

In the 2DAM, the data words should be simultaneously written in modules:

(p, q) = (k, l ·W ), (k, l ·W + 1), ..., (k, l ·W + W − 1) (6)

at local module address:

ALAM
p,q (i, j) = (i div a) · N

b
+ j div b. (7)

Note, that accessing only aligned blocks from the LAM enables thorough bandwidth utilization. When only

aligned blocks are addressed, all address generators issue the same address, due to (4). Therefore, during write

operations into 2DAM, the same addressing circuitry can be used as for reading. If the modules are true dual

port, the write port addressing can be simplified to just proper wiring of bothi and j address lines because the

incrementor and the LUTs from Figure 6(a) are not required. Therefore, module addressing circuitry is not depicted

in Figure 7.

Addressing consistency.In the following, we will prove that the described scheme provides a consistent LAM

and 2DAM addressing. It means that each and every byte is allocated in the same memory module and at the same

intra-module address by both LAM and 2DAM addressing schemes.

Lemma 1 x mod z = x− n · z iff 0 ≤ x− n · z < z; ∀x, n, z ∈ N.

Proof. 1. If x mod z = x− n · z ⇒ 0 ≤ x− n · z < z; ∀x, n, z ∈ N is true by the definition ofmod operation.

2. If 0 ≤ x − n · z < z ⇒ x mod z = x − n · z; ∀x, n, z ∈ N. Let x mod z = x − p · z. Then, by definition

0 ≤ x− p · z ≤ z. Assumep 6= n ⇒ |p− n| ≥ 1. We derive the system:



13

∥∥∥∥∥∥
0 ≤ x− n · z < z

0 ≤ x− p · z < z

Its only solutionp = n contradicts to the assumption¥

Lemma 2 (x− y) mod z = (x mod z − y) mod z; ∀y < z;∀x, y, z ∈ N

Proof. By definitionx mod z = x−n1 · z and(x mod z−y) mod z = (x mod z−y)−n2 · z. ⇒ By substitution

and based on Lemma 1, we derive:(x mod z − y) mod z = (x− n1 · z − y)− n2 · z = (x− y)− (n1 + n2) · z =

(x− y) mod z ¥

Lemma 3 (x div y) · y = x− x mod y

Proof.

∥∥∥∥∥∥∥∥∥

x mod y = p

x div y = k

k · y + p = x

⇒
(x div y) · y =

= k · y = x− p =

= x− x mod y ¥

Theorem 1 (Consistency between the 2DAM and the LAM addressing schemes).Assume the 2DAM and LAM

addressing interface schemes defined by (2)-(4) and (5)-(7), respectively. Any byte(i‘, j‘) is allocated in the same

memory module at the same intra-module address by both addressing schemes.

Proof. Consistency of module assignments.Consider byte(i‘, j‘). In consistence with (5), we definek = i‘ mod a

and l = (j‘ mod b) div W . Considering the LAM interface and Lemma 3, the module, where byte(i‘, j‘) should

be stored is calculated as follows:

(p, q) = (k, l ·W + (j‘ mod b) mod W ) =

= (k, {(j‘ mod b) div W} ·W + (j‘ mod b) mod W ) =

= (k, (j‘mod b)− (j‘mod b)modW + (j‘mod b)modW )

⇒ (p, q) = (k, j‘ mod b) (8)

Considering (2)-(3) for the 2DAM module allocation and Lemma 2, we derive:

mp(i‘) = mq(j‘) =

= (i‘ − p) mod a = 0 = (j‘ − q) mod b = 0

(i‘mod a− p) mod a = 0 (j‘mod b− q) mod b = 0;

(k − p)mod a = 0; k < a j‘mod b < b

⇒ p = k; q = j‘mod b (9)

Equations (8) and (9) indicate that any byte(i‘, j‘) will be allocated in the same memory module both by the LAM

interface and by the 2DAM read circuitry.



14

Consistency of intra-module addresses.Assume(i,j) is the aligned block, containing byte(i‘, j‘), i.e., i div a =

i‘ div a, j div b = j‘ div b. Consider (4):

Ap,q(i‘, j‘) = (i‘ div a + ci) · N
b + j‘ div b + cj , from (9): p = i‘ mod a andq = j‘ mod b ⇒ ci = cj = 0, ⇒

Ap,q(i‘, j‘) = (i div a) · N
b + j div b, identical to (7)¥

Example. We consider a single (arbitrary chosen) byte and show that it is allocated in the same memory module

and at the same intra-module address both by the LAM and by the 2DAM addressing schemes.

Assume that visual data is scan-line aligned in LAM with word length of 2 bytes and big-endian convention.

Consider the byte with 2D address(1,11), see Figure 3. The memory hierarchy of Figure 2 indicates that byte

(1,11) has to be loaded from the LAM into the 2DAM by means of the proposed LAM interface. Assuming

that the 2DAM is first loaded in its entirety, all aligned blocks of the considered5 × 16-byte area are to be

loaded from the LAM into the 2DAM. Byte(1,11) is assigned in the LAM as part of aligned block(0,8). The

LAM addresses of the four 2-byte words containing the pixels of the block areALAM = 8, 10, 24, 26, see Figure

3. The LAM address of the 2-byte word, containing the considered pixel(1,11) is calculated from (5) to be:

ALAM (0, 8)k=1,l=1 = (0+1)·16+8+1·2 = 26. Recall Figure 3, where byte(1,11)had LAM address 27. Thus, in the

assumed big-endian LAM convention, the considered byte 27 is the most significant byte of the 2-byte memory word

aligned at address 26. Considering (6), this 2-byte word should be stored into modules(1,2) and (1,3), see Figure

7. The most significant byte, i.e., byte 27, should be stored into module(p, q)k=1,l=1 = (k, l ·W +W −1) = (1, 3).

Its intra-module address with respect to the LAM interface is calculated from (7) to be:

ALAM
1,3 (0, 8) = (0 div 2) · 16

4
+ 8 div 4 = 2

That is, byte (1,11) with LAM address 27, will be stored by the LAM-to-2DAM interface into module (1,3) at

intra-module address 2.

Consider the 2DAM addressing scheme, the shaded non-aligned block(1,10) in Figure 3 and Figure 4, and (2)-

(4). Indeed,considering the 2DAM addressing scheme, byte(1,11) can be read from address location 2 of module

(1,3), as it was shown in the previous example.

Critical paths. Regarding the performance of the proposed design, we should consider the created critical path

penalty. Assuming generic synchronous memories where addresses are generated in one cycle and data are available

in another, we separate the critical paths into two: address generation and data routing. For the proposed circuit

implementation, the address generation critical paths (CPA) is determined by:

CPA = max(CPadd M

a
, CPadd N

b
) + CPLUT .

That is the critical path of either alog2(M
a )-bit or a log2(N

b )-bit adder, whichever is longer, and the critical path

of one (max. 4-input) LUT. The data routing critical path (CPD) is:



15

CPD = CPmuxa
+ CPmuxb

.

That is, the sum of the critical paths of onea → 1 multiplexor and oneb → 1 multiplexor.

IV. EXPERIMENTAL RESULTS AND RELATED WORK

In the previous sections, we have considered the theoretical aspects of our proposal illustrated by simplified

examples. In this section, an experimental case study for a number of real-world FPGA-based designs is presented,

followed by a comparison to other related works reported in literature.

Case study:A generic VHDL model of the memory organization has been developed and synthesized for the

recent Virtex II Pro FPGA technology of Xilinx. We assume reconfigurable technology for two reasons. First,

showing the viability of the organization in reconfigurable technology also proves its viability to all other current

and near future technologies. Second, we envision, for cost-efficiency, that assuming MPEG specific requirements,

the organization may be incorporated in a reconfigurable augmented processor [13]. Table III contains synthesis

results for the 2vp50ff1152 FPGA device (the last column displays some of the resources available on the chip).

The on-chip memory volume allows frames or VOPs sized up-to512x1024pixels to be stored. It should be noted

that more than one frame can be stored in the memory and accessed, depending on the particular frame format.

For example, up-to fourteen CIF frames (144x176) can be stored into the implemented512x1024storage. This

issue is much more beneficial in MPEG-4, where the arbitrary shaped VOPs to be stored vary both in size and

number for each particular codec session. Synthesis data for practical MPEG pattern sizes of2x4, 4x8, 8x8 and

16x16-pixelsindicate that respective structures can be efficiently implemented with a fraction of the available FPGA

resources. Only the16x16pattern creates a resource conflict with regard to the available IO pins of the chip. This

conflict, however, should not be considered as a problem, since structures with bandwidth of that magnitude are

usually intended for on-chip implementations. In the ’Adders’ rows of Table III, the notation ’bits/#’ denotes the

number of bits in an adder and the corresponding number of such adders, respectively. Results indicate that in the

most common case of8 × 8 block patterns, 3287 Virtex II Pro slices are required, which is 13% of the today’s

2vp50ff1152 FPGA device resources.

In Table IV, transfer speedup estimations are presented, assumingTLAM = 10ns. Calculations are made according

to the figures and notations presented in Table II. In BC, all blocks are assumed to be non-aligned, while in WC

the very unlikely scenario that all blocks are aligned and accessed only once is considered.T2DA values are derived

from the synthesis reports for the designs considered in Table III. Figures in Table IV indicate that even in the

unfavorable case when 2DAM is slower than the LAM, considerable transfer speedups of up to 8x can be achieved,

due to the proposed memory organization.

Related work. Accessing blocks of memory has been in the hearts of vector (array) processors researchers and

developers for long time. Two major groups of memory organizations for parallel data access have been reported



16

TABLE III

SYNTHESIS FOR FRAMES UP-TO 512X1024 (DEVICE 2VP50FF1152).

a× b 2 x 4 4 x 8 8 x 8 16 x 16 Avail.

2-1mux 192 1280 3072 16384 N.A.

Adders: 4 10 14 30 N.A.

bits/# 8/1 7/3 6/7 5/15 N.A.

bits/# 8/3 7/7 7/7 6/15 N.A.

# Slices 534 1512 3287 15408 24640

% 1 6 13 63 100

# LUT4 928 2630 5723 26805 49280

% 1 5 11 54 100

IOs 100 292 548 2084 756

BRAM 8x 32x 64x 256x 522K

64K 16K 8K 2K

TABLE IV

ESTIMATED TRANSFERSPEEDUPS FORTLAM = 10ns

a× b T2DA t= w Transfer Speedup
T2DA
TLAM

BC Mix. WC

8 7,45 7,34 0,97

8x8 16,7ns 1,67 16 7,05 6,88 0,95

32 6,54 6,27 0,91

8 8,03 8,00 0,99

16x16 18,8ns 1,88 16 8,05 8,00 0,99

32 8,10 8,00 0,97

in literature - organizations with and without data replication (redundancy). We are interested only in those without

data replication. Another division is made with respect to the number of memory modules - equal to the number

of accessed data points and exceeding this number. Organizations with a prime number of memory modules can

be considered as a subset of the latter. An essential implementation drawback of such organizations is that their

addressing functions are non-separable and more complex, thus slower and costly to implement. We have organized

our comparison with respect to block accesses, discarding other data patterns, due to the specific requirements

of visual data compression. It should be noted, however, that our design can be easily augmented to accesses

horizontal and verticala× b lines, just by slightly modifying the module assignment functions and preserving the

same addressing function.

To compare designs, two basic criteria have been established: scalability and implementation drawbacks in terms

of speed and/or complexity. Comparison results are reported in Table V. Budnik and Kuck [1] described a scheme



17

TABLE V

COMPARISON TO OTHER PROPOSED SCHEMES

Related Work scalability # modules implementation drawbacks or limitations

Budnik, Kuck [1]
√

N ×√N from N ×N prime m > N = 2n mod(m), crossbar, no addressing

Lawrie [8]
√

N ×√N m = 2.N ; N = 22n+1 mod(m), no addressing

Voorhis, Morin [12] p× q from M ×N m ≥ p× q not separable,mod(pq),mod(pq+1),

Kim, Prasanna [3]
√

N ×√N from N ×N m = N certain blocks are inaccessible

De-lei Lee [9]
√

N ×√N from N ×N m = N many modules for higherN

Sproull et al. [11] 8× 8 8× 8 time-space multiplexing, not general

Park [10] p× q from M ×N prime m > p× q not separable, many adders, big LUTs

HiPAR-DSP [5], [14] N ×N m = (1 + N)2 2×N + 1 additional modules,mod(m)

HiPAR-DSP16 [4] p× q from M ×N m >> p× q big number of modules,mod(m)

This proposal p× q from M ×N m = p× q none of the above, rectangular patterns only

for conflict free access of
√

N ×√N square blocks out ofN ×N arrays, utilizingm > N = 2n memory modules,

whereM is a prime number. Their scheme allows the complicated full crossbar switch as the only possibility for

data alignment circuitry and many costlymodulo(M) operations with M not a power of two. In a publication,

related to the development of the Burroughs Scientific Processor, Lawrie [8] proposes an alignment scheme with

data switching, simpler than a crossbar switch, but still capable to handle only
√

N × √
N square blocks out

of m=2N modules, whereN = 22n+1. Both schemes in [1] and [8] require larger number of modules than the

number of simultaneously accessed (image) points (N). Furthermore, in both papers authors do not describe the

necessary addressing circuitries for their schemes. Voorhis and Morin [12] suggest various addressing functions

consideringp× q subarray accesses and different number of memory modules M: bothm = p× q andm > p× q.

Neither of the functions proposed in [12] is separable, which leads to an extensive number of address generation

and module assignment logic blocks. In [3] authors propose a module assignment scheme based on Latin squares,

which is capable of accessing
√

N×√N square blocks out ofN×N arrays, but not from random positions. Similar

drawbacks has the scheme proposed in [9]. One early graphical display system, described in [11], can be considered

a partial case of our scheme, since authors describe square8×8 submatrix accesses and memory alignment similar

to the proposed in our scheme. The authors in [11] did not consider rectangular subarray accesses, which are not

directly deducible from the proposed reading. No formalization of the addressing functions was presented either. A

more recent display system memory, capable of simultaneous access ofp× q rectangular subarrays is described in

[10]. The design, proposed there, utilizes a prime number of memory modules, which enables accesses to numerous

data patterns, but disallows separable addressing functions. Therefore, regarding block accesses, it is slower and

requires more memory modules than our proposal. Large LUTs (in size and number) and yet longer critical path with

consecutive additions can be considered as other drawbacks of [10]. A memory organization, capable of accessing



18

N ×N square blocks, aligned into(1 + N)2 memory modules was described in [5]. The same scheme was used

for the implementation of the matrix memory of the first version of HiPAR-DSP [14]. Besides the restriction to

square accesses only, that memory system uses a redundant number of modules, due to additional DSP-specific

access patterns considered. A definition of rectangularp×q block random addressing scheme from the architectural

point of view dedicated for multimedia systems was introduced in [7], but no particular organization was presented

there. In the latest version of HiPAR16 [4], the matrix memory was improved so that a restricted number of

rectangular patterns could also be accessed. This design, however, still uses excessive number of memory modules

asp andM respectivelyq andN should not have common divisors. E.g., to access the example2× 4 pattern, the

HiPAR16 memory requires3× 5 = 15 memory modules, instead of 8 for our proposal. The memory of [4] would

require more-complicated circuitry. Similarly to [11], [4], [14] assume separability, however, the number of utilized

modules is even higher than the closest prime number top×q. Compared to [1], [3]–[5], [8]–[11], [14], our scheme

enables higher scalability and lower number of memory modules. This reflects directly to the design complexity,

which has been proven to be very low in our case. Address function separability reduces the number of address

generation logic and critical path penalties, thus enables faster implementations. Regarding address separability, we

differentiate from [1], [3], [8]–[10], [12], where address separability is not supported. As a result,our design is

envisioned to have the shortest critical path penalties among all referenced works.

V. CONCLUSIONS

We presented a scalable memory organization capable of addressing randomly aligned rectangular data patterns

out of a virtual 2D data storage. High performance is achieved by reduced number of data transfers between memory

hierarchy levels, efficient bandwidth utilization, and short hardware critical paths. In the proposed design, data are

located in an array of byte addressable memory modules by an addressing function, implicitly containing module

assignment functions. An interface to a linearly addressable memory has been provided to load the array of modules.

Theoretical analysis proving the consistency and efficiency of the linear and the two-dimensional addressing schemes

has been also presented. The implementation of the organization was evaluated by experimental synthesis. Results

indicate that a scalable range of such organizations can be efficiently mapped on recent FPGA technologies. At

reasonably small hardware costs, we achieved considerable speedups of up to 8x for an experimental case study

design versus traditional linearly addressable memories. The design is envisioned to be more cost-effective compared

to related works reported in literature. The proposed organization is intended for specific data intensive algorithms

in visual data processing applications, but can also be adopted by other general purpose applications with high data

throughput requirements including vector processing.



19

ACKNOWLEDGEMENTS

This research is supported by PROGRESS, the embedded systems research program of the Dutch organization for

Scientific Research NWO, the Dutch Ministry of Economic Affairs, and the Technology Foundation STW (project

AES.5021).

REFERENCES

[1] P. Budnik and D. J. Kuck. The organization and use of parallel memories.IEEE Transactions on Computers, 20(12):1566–1569,

December 1971.

[2] ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video verification model version 16.0.

[3] K. Kim and V. K. Prasanna. Latin squares for parallel array access.IEEE Transactions on Parallel and Distributed Systems, 4(4):361–

370, 1993.

[4] H. Kloos, J. Wittenburg, W. Hinrichs, H. Lieske, L. Friebe, C. Klar, and P. Pirsch. HiPAR-DSP 16, a scalable highly parallel DSP core

for system on a chip: video and image processing applications. InIEEE International Conference on Acoustics, Speech, and Signal

Processing, volume 3, pages 3112–3115, Orlando, Florida, USA, May 2002. IEEE.

[5] J. Kneip, K. Ronner, and P. Pirsch. A data path array with shared memory as core of a high performance DSP. InProceedings of the

International Conference on Application Specific Array Processors, pages 271–282, San Francisco, CA, USA, August 1994.

[6] P. M. Kogge.The Architecture of Pipelined Computers. McGraw-Hill, 1981.

[7] G. Kuzmanov, S. Vassiliadis, and J. van Eijndhoven. A 2D Addressing Mode for Multimedia Applications. In E. F. Deprettere, J. Teich,

and S. Vassiliadis, editors,Workshop on System Architecture Modeling and Simulation (SAMOS 2001), volume 2268 ofLecture Notes

in Computer Science, pages 291–306, SAMOS, Greece, July 2001. Springer-Verlag. ISBN: 3-540-43322-8.

[8] D. H. Lawrie. Access and alignment of data in an array processor.IEEE Transactions on Computers, C-24(12):1145–1155, December

1975.

[9] D. lei Lee. Scrambled Storage for Parallel Memory Systems. InProc.IEEE International Symposium on Computer Architecture, pages

232–239, Honolulu, HI, USA, May 1988.

[10] J. W. Park. An efficient buffer memory system for subarray access.IEEE Transactions on Parallel and Distributed Systems, 12(3):316–

335, March 2001.

[11] R. F. Sproull, I. Sutherland, A. Thomson, S. Gupta, and C. Minter. The 8 by 8 display.ACM Transactions on Graphics (TOG),

2(1):32–56, 1983.

[12] D. C. van Voorhis and T. H. Morrin. Memory systems for image processing.IEEE Transactions on Computers, C-27(2):113–125,

February 1978.

[13] S. Vassiliadis, S. Wong, and S. Cotofana. The MOLENρµ-coded processor. In11th International Conference on Field Programmable

Logic and Applications (FPL), pages 275–285, Belfast, Northern Ireland, UK, August 2001.

[14] J. P. Wittenburg, M. Ohmacht, J. Kneip, W. Hinrichs, and P. Pirsh. HiPAR-DSP: a parallel VLIW RISC processor for real time image

processing applications. In3rd International Conference on Algorithms and Architectures for Parallel Processing, 1997. ICAPP 97.,

pages 155–162, Melbourne, Vic. , Australia, December 1997.


