
GPU-Accelerated BWA-MEM Genomic
Mapping Algorithm Using Adaptive

Load Balancing

Ernst Joachim Houtgast1(B), Vlad-Mihai Sima1,
Koen Bertels2, and Zaid Al-Ars2

1 Bluebee, Delft, The Netherlands
{ernst.houtgast,vlad.sima}@bluebee.com

2 Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
{k.l.m.bertels,z.al-ars}@tudelft.nl

Abstract. Genomic sequencing is rapidly becoming a premier generator
of Big Data, posing great computational challenges. Hence, acceleration
of the algorithms used is of utmost importance. This paper presents
a GPU-accelerated implementation of BWA-MEM, a widely used algo-
rithm to map genomic sequences onto a reference genome. BWA-MEM
contains three main computational functions: Seed Generation, Seed
Extension and Output Generation. This paper discusses acceleration of
the Seed Extension function on a GPU accelerator.

The GPU-based Extend kernel achieves three times higher perfor-
mance and, by offloading the kernel onto an accelerator and overlapping
its execution with the other functions, this results in an overall improve-
ment to application-level execution time of up to 1.6x.

To ensure that using an accelerator always results in an overall perfor-
mance improvement, especially when considering slower GPUs, an adap-
tive load balancing solution is introduced, which intelligently distributes
work between host and GPU. This provides, compared to not using load
balancing, up to +46 % more performance.

Keywords: Acceleration · BWA-MEM · GPU · High performance
genomics

1 Introduction

Genomics information proves to be a valuable source of information to clini-
cians and researchers alike. The amount of data generated by Next Generation
Sequencing (NGS) techniques is increasing at an explosive rate and will soon
rival, if not overtake, other Big Data fields such as astronomy [14]. The raw
sequenced data is processed by a complex pipeline of algorithms, a so-called
genomics analysis pipeline. This data processing can require many days, even
on a large cluster, and is becoming a bottleneck for applications dependent on

c� Springer International Publishing Switzerland 2016
F. Hannig et al. (Eds.): ARCS 2016, LNCS 9637, pp. 130–142, 2016.
DOI: 10.1007/978-3-319-30695-7 10

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 131

genetic information. Hence, the challenges in genomics are shifting from sequenc-
ing towards data processing. Therefore, acceleration of bioinformatics algorithms
is vital to relieve these bottlenecks.

One step in genomics analysis pipelines is to reconstruct the original genome
from the millions of short reads produced using NGS. The purpose of subsequent
steps in the pipeline is to find differences in the sequenced genetic material as
compared to annotated reference material. The reconstruction step of a typi-
cal pipeline is represented by the mapping of the short reads onto a reference
genome. BWA-MEM [9] is widely used in practice to this end.

This paper presents the following contributions:

– The first GPU-based implementation of the BWA-MEM algorithm.
– A load balancing algorithm to distribute reads between host and accelerator.
– A comparison of kernel and system-level results to an FPGA implementation.

The rest of this paper is organized as follows: Sect. 2 places this work into
its context within related work. Section 3 discusses the BWA-MEM program
operation and its main functions. Section 4 explains the modification of program
scheduling to improve the acceleration potential. Section 5 describes the load bal-
ancing system. Section 6 discusses the GPU implementation. Section 7 presents
the methods and results. The paper is concluded by Sect. 8.

2 Related Work

Although BWA-MEM [9] is one of the most popular mapping tools, there are
numerous other mapping tools available. Most state-of-the-art mapping tools,
such as [7], follow the Seed-and-Extend paradigm, explained below. Mapping
tools generally differ in their mapping quality and speed. BWA-MEM offers a
good compromise between mapping speed and quality. Many accelerated Seed-
and-Extend-based mapping tools exist. However, in the field of bioinformatics,
exactness of results is critical. To the authors’ knowledge, the only accelerated
versions of BWA-MEM are [1,5]. In [5], one of the BWA-MEM kernels is mapped
onto a FPGA-based systolic array. This is further improved upon in [1], in which
multiple BWA-MEM kernels are accelerated. The work here is similar to [5], but
implements the systolic array on a GPU-based platform instead.

3 BWA-MEM Algorithm

BWA-MEM [9] is used to map sequenced reads onto a reference genome, such
as the human genome. To illustrate the data sizes involved, a single run on a
currently state-of-the-art sequencing platform, the Illumina HiSeq X, generates
up to six billion pair-ended reads of 150 base pairs (or bp) in less than three
days [6]. Even on a cluster, processing this data can take multiple days.

BWA-MEM is based on the Seed-and-Extend paradigm (refer to Fig. 1). For
each read, seed locations on the genome are determined, exactly matching sub-
sequences of the read and the reference. Then, Seed Extension is performed: an

ernst.houtgast@bluebee.com

132 E.J. Houtgast et al.

Fig. 1. BWA-MEM processes reads using the Seed-and-Extend paradigm: for each read,
likely mapping locations on the reference are found by searching for exactly matching
subsequences between the read and the reference, so called seeds. Then, these seeds
are extended in both directions using a Smith-Waterman-like dynamic programming
approach that allows for inexact matches. From all of these extended seeds, the best
scoring alignment is selected.

attempt to extend these seeds in both directions using an alignment algorithm
that allows for inexact matches. The best scoring alignment is chosen from all the
resulting alignments. The final score is obtained by performing global alignment
over the entire read against the chosen reference region.

3.1 BWA-MEM Profiling Results

The BWA-MEM algorithm main functions are: Seed Generation, Seed Extension,
and Output Generation. To investigate the acceleration potential of BWA-MEM,
the application has been profiled using the GCAT data set. The results are
shown in Table 1, which reveals that acceleration of BWA-MEM is not trivial:
processing is divided over multiple functions. As per Amdahl’s law, speedup
resulting from acceleration of any single function is limited. Greater speedup
can only be achieved when accelerating multiple functions, such as in [1]. The
table also shows that Seed Extension is the function limited by a computational
bottleneck. For this reason, the Seed Extension function was chosen as initial
optimization target. The other functions are not further analyzed in this paper.

Table 1. Results of BWA-MEM algorithm profiling (tests performed on Intel Core
i7-4790 @ 4 GHz with the GCAT 150bp-se-small-indel data set)

Program kernel Time Bottleneck Processing Max speedup

Seed generation 46 % Memory Parallel 1.85x

Seed extension 43 % Computation Parallel 1.75x

Output generation 4 % Memory Parallel 1.04x

Other 7 % I/O Sequential 1.08x

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 133

Fig. 2. Extend algorithm similarity matrix with initial score 60 showing local alignment
with maximum score and global maximum score. Read symbols map one-to-one onto
systolic array Processing Elements. Matrix entries only depend on top, top-left, and
left neighbor. Thus, anti-diagonals can be processed in parallel. Differences compared
to regular Smith-Waterman are: additional Initialization and End-of-Query blocks,
non-zero initial values, and additional outputs, such as the global maximum (from [5]).

3.2 Seed Extension Functional Details

After Seed Generation, Seed Extension is invoked, which consists of two separate
components: an outer function that loops over all seeds and determines whether
it should be extended or not; and the actual Extend kernel. The number of times
the Extend kernel is performed depends on the number of seeds found, which can
range from none to thousands of seeds per short read. Since seeds generally only
encompass a subsequence of the read, they may be extended in either direction,
unless the seed includes the first and/or last symbol of the read.

The outer function keeps track of all earlier found extensions belonging to one
read. If a later seed overlaps previous extensions by a certain amount, the seed is
ignored. Seeds that are located close together on the reference are grouped into
chains. Profiling shows that, in general, only one seed per chain is extended.
Hence, a dependency exists between the extension of seeds. This dependency
makes Extend less suitable for parallel execution: speculatively performing all
extensions in parallel would cause significant work that would outweigh any
benefit of parallelization. Therefore, Extend kernel executions for a read are
performed serially. Instead, parallelism is extracted on two other levels: on the
read-level by processing multiple reads at the same time, and by utilizing the
parallelism inherent in the extension algorithm itself.

ernst.houtgast@bluebee.com

134 E.J. Houtgast et al.

The extension algorithm is similar to the well-known Smith-Waterman
dynamic programming algorithm [13], used to align two sequences to each other.
Its basic operation is illustrated in Fig. 2. To compute the optimal alignment, a
similarity matrix is filled, thus computing all possible alignments. The value of
one cell in this matrix is only dependent on its top, top-left, and left- neighbor.
Hence, anti-diagonals can be computed in parallel. A systolic array implementa-
tion is a natural way to map the problem onto Processing Elements when using
an acceleration platform [10,15].

Most GPU-based Smith-Waterman acceleration efforts operate by mapping
the complete processing of one alignment to a single core, in effect doing hun-
dreds of sequence alignments in parallel [3,11]. As on a GPU the cores operate
in lock-step, optimal performance is contingent on balancing the workload per
core. Hence, alignments are sorted beforehand. Unfortunately, for BWA-MEM
this method is unsuitable as Extend kernel invocations are generated dynami-
cally and can have very different lengths. Therefore, to extract parallelism, the
implementation described here operates in a systolic array-like manner.

As the Extend kernel is used to extend an earlier found match, in contrast
to simply aligning sequences in complete isolation, it differs from regular Smith-
Waterman in three ways, explained below. These differences are also illustrated
in Fig. 2. The result is that the Extend kernel implementation is more complex
than a normal Smith-Waterman implementation.

Non-zero Initial values: The initial values of the similarity matrix are not
zero, but depend on the score of the seed that is being extended. Therefore, an
Initial Value block is added in front of the systolic array.

Additional Outputs: The Extend kernel produces more outputs than the nor-
mal Smith-Waterman algorithm. Therefore, to obtain these, the output is post-
processed by an additional End-of-Query block.

Partial Similarity Matrix Calculation: The algorithm uses a heuristic to
restrict the similarity matrix calculations to only those cells that are likely to
influence the end result.

4 Accelerated Program Architecture

In this section, changes made to enable an accelerated implementation of the
BWA-MEM algorithm are described. The main goal was to drastically reduce
the number of Seed Extension invocations. The original BWA-MEM algorithm
works as shown in Algorithm 1. The input data is processed in batches. For each
read in a batch, Seed Generation is performed first; then, Seed Extension; and
finally, Output Generation. Note that for each read, Seed Generation and Seed
Extension are performed directly after one another.

Applying heterogeneous acceleration of the Seed Extension function call
directly to this structure would imply accelerator invocation for every individual
read, along with the accompanying data transfers from and to the device’s mem-
ory. As typically many millions of reads are processed, the resulting overhead

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 135

Algorithm 1. Original Program Structure
Input: a batch of n reads
Output: n aligned reads
1: for i = 1 to n do
2: Seed Generation(read i)
3: Seed Extension(read i)
4: end for
5: for i = 1 to n do
6: Output Generation(read i)
7: end for

would be likely to nullify any gains resulting from more efficient execution. More-
over, acceleration of a single alignment may not even be faster than processing
it on the host. Often, speedup is obtained by leveraging the massive parallelism
inherent in the data set to be processed, which accelerators are able to exploit.

Therefore, the BWA-MEM program structure has been refactored in order to
be more receptive to heterogeneous execution. The refactored structure is given
in Algorithm 2. Note that the workload has been subdivided into chunks of reads.
For each chunk, first, Seed Generation is performed for all reads in the chunk.
Then, the Seed Extension function is executed for all the reads in the chunk.
Then, the algorithm proceeds to the next chunk. After all chunks are finished,
Output Generation is performed. This setup requires temporary data storage,
which is in the order of tens of megabytes. However, this approach is far more
suitable to acceleration, as in this situation a single accelerator invocation suffices
to perform Seed Extension for the entire chunk, as opposed to one invocation per
read. The reduction in number of invocations is on the same order of magnitude
as the chunk size, which is typically in the order of tens of thousands.

Algorithm 2. Refactored Program Structure
Input: a batch of n reads
Output: n aligned reads
1: for i = 1 to n/chunksize do
2: for j = 1 to chunksize do
3: Seed Generation(read j + (i − 1) × chunksize)
4: end for
5: for j = 1 to chunksize do
6: Seed Extension(read j + (i − 1) × chunksize)
7: end for
8: end for
9: for i = 1 to n do

10: Output Generation(read i)
11: end for

Note that Algorithm 2 has been implemented in such a way that Seed Gener-
ation and Seed Extension are overlapped in a pipelined fashion. Hence, ideally,

ernst.houtgast@bluebee.com

136 E.J. Houtgast et al.

the execution of Seed Extension is almost completely hidden, resulting in a max-
imum theoretical speedup of 1.75x, as predicted by Amdahl’s law.

5 Adaptive Load Balancing Strategy

To accelerate the Seed Extension function (lines 5–7 of Algorithm2), a GPU is
used to assist the host in processing the Seed Extension work. To ensure optimal
speedup, even for slower GPUs, an adaptive load balancing strategy is used to
determine the optimal division of work between host and GPU, controlled by
a Load Balancing Factor parameter (LBF). The goal of this algorithm is to
minimize the idle time on both host and GPU. Otherwise, simply offloading all
the work onto a slower GPU might result in an application slowdown, instead
of in an application speedup. The LBF is recalculated after each batch of reads
as shown in Algorithm 3. As the amount of work per batch seems mostly stable,
idle time is minimized by measuring the host and the GPU processing times
to determine their respective busy percentage during the previous batch and
modifying the LBF accordingly (similar to [2]). Given a sufficiently fast GPU,
all the work can be offloaded from the host. However, for a slower GPU, only
part of the work may be performed on the GPU, hence LBF will be less than 1.
The load balancing should result in a speedup in all cases though. The algorithm
uses smoothing in order to prevent oscillations of the LBF.

Algorithm 3. Adaptive Load Balancing Strategy
Input: HostBusyPct, GPUBusyPct, LBFold

Output: LBFnew

1: for each batch of reads do
2: LBFold = LBFnew

3: LBFnew = (HostBusyPct / GPUBusyPct) × LBFold

4: LBFnew = min(1, (LBFnew + LBFold) / 2)
5: end for

6 Implementation Details

The GPU implementation of Seed Extension consists of an outer loop and the
actual Extend kernel. These have been implemented as separate kernels using
the NVIDIA CUDA Runtime API. In this section, the GPU kernels and the
optimizations that were applied are described in more detail.

6.1 Seed Extension Function Kernels

As discussed before (see Algorithm 2), reads are sent in large batches to the GPU.
Each read is processed independently by the outer loop kernel, a control function
that loops over the seeds and, using CUDA Dynamic Parallelism (available from

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 137

Table 2. Summary of NVIDIA CUDA compiler & profiling information

CUDA kernel # Calls Time Registers Shared memory Threads

Outer loop 1 66 % 78 0 kB 1

Extend multipass long 24657 17 % 34 2.9 kB 32

Extend wide 17912 11 % 54 3.3 kB 1–131

Extend multipass short 9695 3 % 34 1.7 kB 32

Extend single pass 17640 3 % 30 0.5 kB 32

CUDA Compute Capability 3.5 onward), instantiates Extend kernels as needed.
This function only runs as a single thread. For the Extend kernel itself, four
versions of the kernel have been implemented to optimize register and shared
memory usage to improve occupancy. These are described in the next section.
Table 2 provides some information on the CUDA kernels in use.1 From the table,
it is clear that most time is spent in the outer loop, which is characterized by
random memory accesses and branching operations.

6.2 Extend Systolic Array Kernels

The basic idea of all the Extend kernels is their implementation as a systolic
array, similar to [5]. The largest advantage of using a systolic array is the possi-
bility to extract the available parallelism on anti-diagonals while calculating
the similarity matrix. Using a systolic array, calculation of the entire array
takes O(|Reference| + |Extension|) execution time, instead of O(|Reference| ×
|Extension|). For larger problem sizes, this can result in a large speedup com-
pared to a serialized implementation. The drawback of a systolic implementation
is the often low overall efficiency: in general, not all the Processing Elements (or
PEs) of the array can be kept busy. Full utilization is only attained during calcu-
lation of the “widest” diagonals of the matrix. For the other diagonals, PEs at the
start and/or at the end of the array will be idle, lowering overall efficiency. More-
over, for physically implemented systolic arrays, unnecessary latency is incurred
when processing reads shorter than the array itself. Also, the number of PEs
determines the maximum length of the extension that can be processed, as one
PE is required for each read symbol that is to be extended. Longer reads can
be processed by making multiple passes over the matrix, with temporary data
stored between passes, as in [12]. The GPU implementation does not suffer from
these issues as the systolic array length is dynamically instantiated.

The GPU implementation maps read symbols onto the systolic array PEs,
similar to Fig. 2. The PEs are implemented as CUDA cores, where a CUDA
thread performs the calculations of that PE. CUDA threads are grouped into
blocks of 32 threads, a warp, which all perform exactly the same instruction.
1 These numbers are obtained while executing the first 50,000 reads of the GCAT

150bp-se-small-indel data set using the nvprof and nvcc tools.

ernst.houtgast@bluebee.com

138 E.J. Houtgast et al.

A warp is the basic unit of action in an NVIDIA GPU. The Ext. wide kernel
is the most straightforward systolic array implementation. On the left of Fig. 3,
is shown how the similarity matrix is processed over time. As many warps as
necessary are allocated to process the matrix. After each cycle, PEs exchange
data through the on-chip Shared Memory cache. For larger extension lengths,
this can require a large amount of shared memory. Moreover, from Fig. 3 it is
clear that many PEs will be idle for much of the time.

Fig. 3. Systolic array-based GPU Extend kernel implementation. Extension symbols
are mapped one-to-one on CUDA cores, reference symbols are fed each iteration of the
loop. After each iteration, data is exchanged through shared memory (left). The single
warp-based implementation makes multiple passes over the array (right). Unnecessary
iterations are skipped over and per-pass temporary data is saved in shared memory.

Therefore, a number of kernels have been implemented designed to process
the matrix on a single warp, which corresponds to 32-symbol wide columns. This
is shown on the right of Fig. 3. Multiple passes are made over the matrix, with
intermediate data between passes saved into shared memory. Data exchange
between cores is implemented using shuffle instructions, avoiding the use of
shared memory. Unnecessary iterations per pass are skipped, drastically reduc-
ing idle time. For example, extending a size 150 reference against a size 100
extension would, in the simple implementation, result in on average 60 cores out
of 100 being busy; however, for the warp-based implementation, 27 out of 32 are

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 139

busy. Efficiency is 40 % higher. The Ext. multipass long and Ext. multipass short
kernels differ in the available amount of statically allocated storage space. The
Ext. single pass kernel is used when the entire matrix fits within a single warp
(i.e., 32 read symbols or smaller), and hence only one pass is needed. In this
case, no intermediate data from the matrix needs to be saved in shared memory.
The use of the different kernels provides a 20 % improvement to performance.

6.3 GPU-Specific Optimizations

Apart from the multiple Extend kernel implementations, the following optimiza-
tions were applied and are worth mentioning:

Coalesced Memory Access: Memory accesses are coalesced as much as pos-
sible. In contrast to a normal systolic array, reference symbols are loaded in one
large coalesced access. Read symbols are obtained similarly.

Shuffle Instructions: Shuffle instructions are used to remove the need to use
shared memory for data exchange between PEs. This is only possible within a
warp, hence the need for a multiple pass implementation.

Dynamic Parallelism: To reduce register pressure, the outer controlling func-
tion uses only a single thread, subsequently invoking Extend kernels with as
many threads as needed using CUDA Dynamic Parallelism.

7 Results

Profiling and performance tests were performed on a machine with an Intel Core
i7-4790 (four cores, Hyper-Threading enabled) running at 4.0 GHz, with 32 GB
of DDR3 memory. The system contains two NVIDIA GeForce GTX TITAN X
cards, with 3,072 CUDA cores each, running at up to 1,076 MHz, and offering
Compute Capability 5.0. The GPU implementation requires at least Compute
Capability 3.5 in order to be able to use dynamic parallelism. NVIDIA CUDA
Runtime API version 7.5 was used.

The 150bp-se-small-indel data set from the Genome Comparison & Analytic
Testing (GCAT) framework [4] was used to map about eight million 150 base
pair reads onto the UCSC HG19 reference human genome. The GCAT online
sequence alignment quality comparison service was used to verify that results
of the GPU-accelerated version are similar to those obtained with the original
BWA-MEM algorithm. BWA-MEM version 0.7.7 was used [8].

7.1 Performance Results and Scaling

Table 3 shows the Extend kernel execution time and overall application per-
formance for single and dual GPU execution using eight CPU threads. The
results of the FPGA implementation from [5] are also given. As the platforms
are non-identical (they use 2x Intel Xeon E5-2643 at 3.3 GHz), relative Extend

ernst.houtgast@bluebee.com

140 E.J. Houtgast et al.

Table 3. Execution time and speedup on the GCAT alignment quality benchmark

Extend kernel Overall program

Platform Test Time Speedup Time Speedup Throughput

GPU-Accelerated CPU only 218 s - 510 s - 2.4 Mbp/s

CPU+Single GPU 118 s 1.9x 468 s 1.09x 2.6 Mbp/s

CPU+Dual GPU 73 s 3.0x 422 s 1.21x 2.9 Mbp/s

FPGA-Accelerated CPU only 167 s - 530 s - 2.3 Mbp/s

CPU+FPGA 62 s 2.7x 365 s 1.45x 3.3 Mbp/s

kernel times differ, mostly due to the different CPUs. Results are normalized to
throughput in base pairs per second, to facilitate comparison of numbers.

The Extend dynamic programming kernel is three times faster compared to
CPU-only execution. Even though execution of this kernel is overlapped with the
functions executed on the host CPU, the results show that, in contrast to the
FPGA implementation, the GPU-accelerated version is unable to hide the entire
Seed Extension function time, due to the large overhead of the outer function.
Performance results for varying CPU thread counts are given in Fig. 4. The dual
GPU setup is able to achieve a speedup of 1.6x for up to two threads, or 1.5x for
four threads. The maximum speedup of 1.75x is not achieved, due to batching
overhead and since GPU on-chip memory limitations allow only 99.5 % of Seed
Extensions to be processed on the GPU. The remaining reads, with thousands
of seeds, are processed on the host and still require about 4% of overall host
execution time, reducing the maximum achievable speedup accordingly.

Fig. 4. Overall application speedup for varying number of CPU threads and single and
dual GPUs. Results shown with load balancing enabled and disabled. The adaptive
load balancing ensures efficient host and accelerator usage and provides an overall
application speedup even for GPU-constrained scenarios, which might otherwise result
in an overall application slowdown.

ernst.houtgast@bluebee.com

GPU-Accelerated BWA-MEM Genomic Mapping Algorithm 141

7.2 Load Balancing Results

An adaptive load balancing algorithm was implemented to ensure optimal benefit
from the use of acceleration. Figure 4 shows that the load balancing is effective:
for increasing number of CPU threads, the load balanced single GPU scenario
provides similar or better performance as compared to non-load balanced exe-
cution, improving performance by up to 46 %. Note that execution using eight
threads results in a slowdown on the non-load balanced situation, due to a mis-
match in host and accelerator performance. For a dual GPU setup, load balanc-
ing still provides a benefit, but only when using eight threads. The unbounded
LBF value is also given. This shows that the dual GPU setup is able to perform
up to 90 % more work than a single GPU setup.

8 Conclusion

This paper describes a GPU-accelerated version of the BWA-MEM genomic
mapping algorithm. It was possible to hide the execution time of the Seed Exten-
sion function, one of the three main computational functions, by overlapping its
execution with the other program functions for up to four CPU threads. Speedup
of up to three times is achieved for the Extend kernel, which translates in an
overall improvement to BWA-MEM execution time of up to 1.6x. This can save
days of processing time on real-world data sets.

A generally applicable adaptive load balancing strategy was implemented to
ensure an efficient division of work between the host and the GPU, improving
performance and ensuring application speedup even for mismatched host and
accelerator performance. The load balancing algorithm provides an improvement
to performance of up to 46%, compared to non-load balanced execution.

Although the work here focuses on BWA-MEM, a widely used genomic map-
ping tool, the approach is valid for many similar Seed-and-Extend-based bioin-
formatics algorithms. Future work will focus on the reorganization of the outer
Seed Extension function to make it better suitable towards parallel execution,
and will also focus on porting other parts of BWA-MEM onto the GPU.

Acknowledgments. The authors would like to thank the people at the Neuroscience
Department of the Erasmus Medical Center for kindly granting access to their com-
puting facilities for performance tests.

References

1. Ahmed, N., Sima, V.M., Houtgast, E., Bertels, K., Al-Ars, Z.: Heterogeneous hard-
ware/software acceleration of the BWA-MEM DNA alignment algorithm. In: Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2015, pp. 240–246. IEEE Press, Piscataway, NJ, USA (2015). http://dl.
acm.org/citation.cfm?id=2840819.2840854

ernst.houtgast@bluebee.com

142 E.J. Houtgast et al.

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
Comput. Pract. Experience 23(2), 187–198 (2011)

3. Hasan, L., Kentie, M., Al-Ars, Z.: DOPA: GPU-based protein alignment using
database and memory access optimizations. BMC Res. Notes 4(1), 261 (2011)

4. Highnam, G., Wang, J.J., Kusler, D., Zook, J., Vijayan, V., Leibovich, N., Mittel-
man, D.: An analytical framework for optimizing variant discovery from personal
genomes. Nature Comm. 6 (2015)

5. Houtgast, E., Sima, V., Bertels, K., Al-Ars, Z.: An FPGA-based systolic array to
accelerate the BWA-MEM genomic mapping algorithm. In: International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation
(2015)

6. Illumina: HiSeq X Specification Sheet. http://www.illumina.com/content/dam/
illumina-marketing/documents/products/datasheets/datasheet-hiseq-x-ten.pdf.
Accessed 15 July 2015

7. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

8. Li, H.: Burrows-Wheeler Aligner. http://bio-bwa.sourceforge.net/. Accessed 04
November 2014

9. Li, H.: Aligning Sequence Reads, Clone Sequences and Assembly Contigs with
BWA-MEM. arXiv preprint arxiv:1303.3997 (2013)

10. Liu, W., Schmidt, B., Voss, G., Schroder, A., Muller-Wittig, W.: Bio-sequence
database scanning on a GPU. In: 20th International Parallel and Distributed
Processing Symposium, 2006, IPDPS 2006, p. 8. IEEE (2006)

11. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-
Waterman protein database search by coupling CPU and GPU SIMD instructions.
BMC Bioinformatics 14(1), 117 (2013)

12. Oliver, T., Schmidt, B., Maskell, D.: Hyper customized processors for bio-sequence
database scanning on FPGAs. In: Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-Programmable Gate Arrays, pp. 229–237. ACM
(2005)

13. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195–197 (1981)

14. Stephens, Z., Lee, S., Faghri, F., Campbell, R., Zhai, C., Efron, M., et al.: Big
data: astronomical or genomical? PLoS Biol. 13(7), e1002195 (2015)

15. Yu, C.W., Kwong, K., Lee, K.H., Leong, P.H.W.: A Smith-Waterman systolic cell.
In: Lysaght, P., Rosenstiel, W. (eds.) New Algorithms, Architectures and Applica-
tions for Reconfigurable Computing, pp. 291–300. Springer, Heidelberg (2005)

ernst.houtgast@bluebee.com

